Multiple Molecular Dynamics Simulations of the Inhibitor GRL-02031 Complex with Wild Type and Mutant HIV-1 Protease Reveal the Binding and Drug-Resistance Mechanism

Human immunodeficiency virus type 1 (HIV-1) protease is regarded as a fascinating target for drug development against HIV infection. However, mutations causing drug resistance severely limit the efficiency of the recently marketed drugs in the treatment of HIV replication. To elucidate the binding m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 46 vom: 24. Nov., Seite 13817-13832
1. Verfasser: Wang, Ruige (VerfasserIn)
Weitere Verfasser: Zheng, Qingchuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Carbamates GRL 02031 HIV Protease Inhibitors Pharmaceutical Preparations Sulfonamides Peptide Hydrolases EC 3.4.- HIV Protease EC 3.4.23.- p16 protease, Human immunodeficiency virus 1
LEADER 01000naa a22002652 4500
001 NLM317431765
003 DE-627
005 20231225163245.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.0c02151  |2 doi 
028 5 2 |a pubmed24n1058.xml 
035 |a (DE-627)NLM317431765 
035 |a (NLM)33175558 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Ruige  |e verfasserin  |4 aut 
245 1 0 |a Multiple Molecular Dynamics Simulations of the Inhibitor GRL-02031 Complex with Wild Type and Mutant HIV-1 Protease Reveal the Binding and Drug-Resistance Mechanism 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.06.2021 
500 |a Date Revised 21.06.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Human immunodeficiency virus type 1 (HIV-1) protease is regarded as a fascinating target for drug development against HIV infection. However, mutations causing drug resistance severely limit the efficiency of the recently marketed drugs in the treatment of HIV replication. To elucidate the binding mechanism of HIV-1 protease with promising inhibitor GRL-02031 and further to probe the resistance mechanism associated with mutations (I47V, L76V, V82A, and N88D) to the inhibitor, we applied multiple molecular dynamics (MMD) simulations along with energy analysis by the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and solvated interaction energy (SIE) methodology on specific HIV-1 protease with GRL-0231 complexes. On the basis of detail analysis of the simulations, we revealed key characteristics that constitute the drug resistance of four mutation HIV-1 proteases toward GRL-02031: substitution of the side chain in these four mutation residues leads to a change in the distances between the flaps and catalytic sites, thereby reducing the affinity for GRL-02031 with these four mutation proteases, even though the L76V and N88D residues cannot directly contact GRL-02031. The results of energy analysis according to the MM-PBSA and SIE methods further indicated that hydrophobic interaction was considered to be the prime driving force for inhibitor GRL-02031 binding to protease and the decrease in van der Waals interactions between inhibitor GRL-02031 and mutant proteases as the primary cause of the drug resistance. Analyses of the hydrogen bonds and atomic interactions further provided detailed explanations for the resistance of these four mutation proteases toward inhibitor GRL-02031. The present study provides potential guidance on the structure-based inhibitors' design targeting HIV-1 protease 
650 4 |a Journal Article 
650 7 |a Carbamates  |2 NLM 
650 7 |a GRL 02031  |2 NLM 
650 7 |a HIV Protease Inhibitors  |2 NLM 
650 7 |a Pharmaceutical Preparations  |2 NLM 
650 7 |a Sulfonamides  |2 NLM 
650 7 |a Peptide Hydrolases  |2 NLM 
650 7 |a EC 3.4.-  |2 NLM 
650 7 |a HIV Protease  |2 NLM 
650 7 |a EC 3.4.23.-  |2 NLM 
650 7 |a p16 protease, Human immunodeficiency virus 1  |2 NLM 
650 7 |a EC 3.4.23.-  |2 NLM 
700 1 |a Zheng, Qingchuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 36(2020), 46 vom: 24. Nov., Seite 13817-13832  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:36  |g year:2020  |g number:46  |g day:24  |g month:11  |g pages:13817-13832 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.0c02151  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 36  |j 2020  |e 46  |b 24  |c 11  |h 13817-13832