High Frame Rate Video Reconstruction Based on an Event Camera

Event-based cameras measure intensity changes (called 'events') with microsecond accuracy under high-speed motion and challenging lighting conditions. With the 'active pixel sensor' (APS), the 'Dynamic and Active-pixel Vision Sensor' (DAVIS) allows the simultaneous outp...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 5 vom: 14. Mai, Seite 2519-2533
1. Verfasser: Pan, Liyuan (VerfasserIn)
Weitere Verfasser: Hartley, Richard, Scheerlinck, Cedric, Liu, Miaomiao, Yu, Xin, Dai, Yuchao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM317339982
003 DE-627
005 20231225163047.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3036667  |2 doi 
028 5 2 |a pubmed24n1057.xml 
035 |a (DE-627)NLM317339982 
035 |a (NLM)33166250 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pan, Liyuan  |e verfasserin  |4 aut 
245 1 0 |a High Frame Rate Video Reconstruction Based on an Event Camera 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Event-based cameras measure intensity changes (called 'events') with microsecond accuracy under high-speed motion and challenging lighting conditions. With the 'active pixel sensor' (APS), the 'Dynamic and Active-pixel Vision Sensor' (DAVIS) allows the simultaneous output of intensity frames and events. However, the output images are captured at a relatively low frame rate and often suffer from motion blur. A blurred image can be regarded as the integral of a sequence of latent images, while events indicate changes between the latent images. Thus, we are able to model the blur-generation process by associating event data to a latent sharp image. Based on the abundant event data alongside a low frame rate, easily blurred images, we propose a simple yet effective approach to reconstruct high-quality and high frame rate sharp videos. Starting with a single blurred frame and its event data from DAVIS, we propose the Event-based Double Integral (EDI) model and solve it by adding regularization terms. Then, we extend it to multiple Event-based Double Integral (mEDI) model to get more smooth results based on multiple images and their events. Furthermore, we provide a new and more efficient solver to minimize the proposed energy model. By optimizing the energy function, we achieve significant improvements in removing blur and the reconstruction of a high temporal resolution video. The video generation is based on solving a simple non-convex optimization problem in a single scalar variable. Experimental results on both synthetic and real datasets demonstrate the superiority of our mEDI model and optimization method compared to the state-of-the-art 
650 4 |a Journal Article 
700 1 |a Hartley, Richard  |e verfasserin  |4 aut 
700 1 |a Scheerlinck, Cedric  |e verfasserin  |4 aut 
700 1 |a Liu, Miaomiao  |e verfasserin  |4 aut 
700 1 |a Yu, Xin  |e verfasserin  |4 aut 
700 1 |a Dai, Yuchao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 5 vom: 14. Mai, Seite 2519-2533  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:5  |g day:14  |g month:05  |g pages:2519-2533 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3036667  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 5  |b 14  |c 05  |h 2519-2533