|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM317320416 |
003 |
DE-627 |
005 |
20231225163023.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202003387
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1057.xml
|
035 |
|
|
|a (DE-627)NLM317320416
|
035 |
|
|
|a (NLM)33164255
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Sachyani Keneth, Ela
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a 3D Printing Materials for Soft Robotics
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 12.05.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 Wiley-VCH GmbH.
|
520 |
|
|
|a Soft robotics is a growing field of research, focusing on constructing motor-less robots from highly compliant materials, some are similar to those found in living organisms. Soft robotics has a high potential for applications in various fields such as soft grippers, actuators, and biomedical devices. 3D printing of soft robotics presents a novel and promising approach to form objects with complex structures, directly from a digital design. Here, recent developments in the field of materials for 3D printing of soft robotics are summarized, including high-performance flexible and stretchable materials, hydrogels, self-healing materials, and shape memory polymers, as well as fabrication of all-printed robots (multi-material printing, embedded electronics, untethered and autonomous robotics). The current challenges in the fabrication of 3D printed soft robotics, including the materials available and printing abilities, are presented and the recent activities addressing these challenges are also surveyed
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a 3D printing
|
650 |
|
4 |
|a actuators
|
650 |
|
4 |
|a self-healing
|
650 |
|
4 |
|a shape memory polymers
|
650 |
|
4 |
|a soft robotics
|
700 |
1 |
|
|a Kamyshny, Alexander
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Totaro, Massimo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Beccai, Lucia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Magdassi, Shlomo
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 19 vom: 15. Mai, Seite e2003387
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:19
|g day:15
|g month:05
|g pages:e2003387
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202003387
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 19
|b 15
|c 05
|h e2003387
|