Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application : A refinement based on regional and crop-specific emission factors
© 2020 John Wiley & Sons Ltd.
Veröffentlicht in: | Global change biology. - 1999. - 27(2021), 4 vom: 23. Feb., Seite 855-867 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Global change biology |
Schlagworte: | Journal Article ammonia emission factor estimate fertilizer application reactive nitrogen Fertilizers Soil Ammonia 7664-41-7 mehr... |
Zusammenfassung: | © 2020 John Wiley & Sons Ltd. Ammonia (NH3 ) emissions from fertilized soils to the atmosphere and the subsequent deposition to land surface exert adverse effects on biogeochemical nitrogen (N) cycling. The region- and crop-specific emission factors (EFs) of N fertilizer for NH3 are poorly developed and therefore the global estimate of soil NH3 emissions from agricultural N fertilizer application is constrained. Here we quantified the region- and crop-specific NH3 EFs of N fertilizer by compiling data from 324 worldwide manipulative studies and focused to map the global soil NH3 emissions from agricultural N fertilizer application. Globally, the NH3 EFs averaged 12.56% and 14.12% for synthetic N fertilizer and manure, respectively. Regionally, south-eastern Asia had the highest NH3 EFs of synthetic N fertilizer (19.48%) and Europe had the lowest (6%), which might have been associated with the regional discrepancy in the form and rate of N fertilizer use and management practices in agricultural production. Global agricultural NH3 emissions from the use of synthetic N fertilizer and manure in 2014 were estimated to be 12.32 and 3.79 Tg N/year, respectively. China (4.20 Tg N/year) followed by India (2.37 Tg N/year) and America (1.05 Tg N/year) together contributed to over 60% of the total global agricultural NH3 emissions from the use of synthetic N fertilizer. For crop-specific emissions, the NH3 EFs averaged 11.13%-13.95% for the three main staple crops (i.e., maize, wheat, and rice), together accounting for 72% of synthetic N fertilizer-induced NH3 emissions from croplands in the world and 70% in China. The region- and crop-specific NH3 EFs of N fertilizer established in this study offer references to update the default EF in the IPCC Tier 1 guideline. This work also provides an insight into the spatial variation of soil-derived NH3 emissions from the use of synthetic N fertilizer in agriculture at the global and regional scales |
---|---|
Beschreibung: | Date Completed 21.04.2021 Date Revised 21.04.2021 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1365-2486 |
DOI: | 10.1111/gcb.15437 |