Methyl salicylate is the most effective natural salicylic acid ester to close stomata while raising reactive oxygen species and nitric oxide in Arabidopsis guard cells

Copyright © 2020 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 157(2020) vom: 01. Dez., Seite 276-283
1. Verfasser: Agurla, Srinivas (VerfasserIn)
Weitere Verfasser: Sunitha, Vaidya, Raghavendra, Agepati S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Arabidopsis mutants NADPH oxidase NO ROS Salicylates Signaling components Arabidopsis Proteins Esters Reactive Oxygen Species mehr... Nitric Oxide 31C4KY9ESH Abscisic Acid 72S9A8J5GW methyl salicylate LAV5U5022Y Salicylic Acid O414PZ4LPZ
Beschreibung
Zusammenfassung:Copyright © 2020 Elsevier Masson SAS. All rights reserved.
Modulation by salicylic acid (SA) and its six esters of stomatal closure was evaluated in Arabidopsis thaliana. The seven compounds tested are salicylic acid (SA), acetylsalicylate (ASA), methyl salicylate (MeSA), propyl salicylate (PrSA), amyl salicylate, benzyl salicylate, and salicin. Among these, MeSA was the most effective to induce stomatal closure, followed by salicin and SA, while ASA was the least effective. Since SA, ASA, and MeSA could modulate plant function, the effects of these three compounds on the levels of reactive oxygen species (ROS) or nitric oxide (NO) in guard cells were studied. MeSA and SA raised the content of ROS or NO in as with ABA. The extent of ROS/NO production in response to ASA was the lowest. Reversal by cPTIO or catalase of stomatal closure by MeSA indicated the essentiality of NO and ROS for stomatal closure. Further studies revealed peroxidase as the ROS source during stomatal closure by MeSA, unlike the dominant role of NADPH oxidase in ROS production induced by ABA. The rise in NO production by ABA or MeSA was dependent on nitrate reductase and NO synthase-like enzyme. Given its most effective nature, MeSA can be an excellent tool to examine the signaling components in guard cells and other plant tissues. The ability of MeSA to induce stomatal closure is physiologically relevant because of its volatile nature, stability, and systemic action
Beschreibung:Date Completed 27.01.2021
Date Revised 27.01.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2020.10.026