Naringenin induces tolerance to salt/osmotic stress through the regulation of nitrogen metabolism, cellular redox and ROS scavenging capacity in bean plants

Copyright © 2020 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 157(2020) vom: 01. Dez., Seite 264-275
1. Verfasser: Ozfidan-Konakci, Ceyda (VerfasserIn)
Weitere Verfasser: Yildiztugay, Evren, Alp, Fatma Nur, Kucukoduk, Mustafa, Turkan, Ismail
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Antioxidant enzymes Compatible solutes Naringenin Nitrogen assimilation ROS scavenging capacity Antioxidants Flavanones Reactive Oxygen Species Sodium Chloride mehr... 451W47IQ8X Hydrogen Peroxide BBX060AN9V Catalase EC 1.11.1.6 Superoxide Dismutase EC 1.15.1.1 Glutathione GAN16C9B8O naringenin HN5425SBF2 Nitrogen N762921K75
LEADER 01000naa a22002652 4500
001 NLM317207830
003 DE-627
005 20231225162742.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2020.10.032  |2 doi 
028 5 2 |a pubmed24n1057.xml 
035 |a (DE-627)NLM317207830 
035 |a (NLM)33152645 
035 |a (PII)S0981-9428(20)30544-1 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ozfidan-Konakci, Ceyda  |e verfasserin  |4 aut 
245 1 0 |a Naringenin induces tolerance to salt/osmotic stress through the regulation of nitrogen metabolism, cellular redox and ROS scavenging capacity in bean plants 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.01.2021 
500 |a Date Revised 27.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2020 Elsevier Masson SAS. All rights reserved. 
520 |a The present study was conducted to uncover underlying possible effect mechanisms of flavonoid naringenin (Nar, 0.1-0.4 mM) in nitrogen assimilation, antioxidant response, redox status and the expression of NLP7 and DREB2A, on salt (100 mM NaCl) and osmotic-stressed (10% Polyethylene glycol, -0.54 MPa) Phaseolus vulgaris cv. Yunus 90). Nar ameliorated salt/osmotic stresses-induced growth inhibition and improved the accumulation of proline, glycine betaine and choline. In response to stress, Nar increased endogenous content of nitrate (NO3-) and nitrite (NO2-) by regulating of nitrate reductase and nitrite reductase. Stress-triggered NH4+ was eliminated with Nar through increases in glutamine synthetase and glutamate synthase. After NaCl or NaCl + PEG exposure, Nar utilized the aminating activity of glutamate dehydrogenase in the conversion of NH4+. The stress-inducible expression levels of DREB2A were increased further by Nar, which might have affected stress tolerance of bean. Nar induced effectively the relative expression of NLP7 in the presence of the combination or alone of stress. Also, the impaired redox state by stress was modulated by Nar and hydrogen peroxide (H2O2) and TBARS decreased. Nar regulated the different pathways for scavenging of H2O2 under NaCl and/or PEG treatments. When Nar + NaCl exposure, the damage was removed by superoxide dismutase (SOD), catalase (CAT), POX (only at 0.1 mM Nar + NaCl) and AsA-GSH cycle. Under osmotic stress plus Nar, the protection was manifested by activated CAT and, glutathione S-transferase and the regeneration of ascorbate. 0.1 mM Nar could protect bean plant against salt/osmotic stresses, likely by regulating nitrogen assimilation pathways, improving expression levels of genes associated with tolerance mechanisms and modulating the antioxidant capacity and AsA-GSH redox-based systems 
650 4 |a Journal Article 
650 4 |a Antioxidant enzymes 
650 4 |a Compatible solutes 
650 4 |a Naringenin 
650 4 |a Nitrogen assimilation 
650 4 |a ROS scavenging capacity 
650 7 |a Antioxidants  |2 NLM 
650 7 |a Flavanones  |2 NLM 
650 7 |a Reactive Oxygen Species  |2 NLM 
650 7 |a Sodium Chloride  |2 NLM 
650 7 |a 451W47IQ8X  |2 NLM 
650 7 |a Hydrogen Peroxide  |2 NLM 
650 7 |a BBX060AN9V  |2 NLM 
650 7 |a Catalase  |2 NLM 
650 7 |a EC 1.11.1.6  |2 NLM 
650 7 |a Superoxide Dismutase  |2 NLM 
650 7 |a EC 1.15.1.1  |2 NLM 
650 7 |a Glutathione  |2 NLM 
650 7 |a GAN16C9B8O  |2 NLM 
650 7 |a naringenin  |2 NLM 
650 7 |a HN5425SBF2  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
700 1 |a Yildiztugay, Evren  |e verfasserin  |4 aut 
700 1 |a Alp, Fatma Nur  |e verfasserin  |4 aut 
700 1 |a Kucukoduk, Mustafa  |e verfasserin  |4 aut 
700 1 |a Turkan, Ismail  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 157(2020) vom: 01. Dez., Seite 264-275  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:157  |g year:2020  |g day:01  |g month:12  |g pages:264-275 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2020.10.032  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 157  |j 2020  |b 01  |c 12  |h 264-275