Self-Representation Based Unsupervised Exemplar Selection in a Union of Subspaces

Finding a small set of representatives from an unlabeled dataset is a core problem in a broad range of applications such as dataset summarization and information extraction. Classical exemplar selection methods such as k-medoids work under the assumption that the data points are close to a few clust...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 5 vom: 15. Mai, Seite 2698-2711
1. Verfasser: You, Chong (VerfasserIn)
Weitere Verfasser: Li, Chi, Robinson, Daniel P, Vidal, Rene
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM317158953
003 DE-627
005 20231225162643.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3035599  |2 doi 
028 5 2 |a pubmed24n1057.xml 
035 |a (DE-627)NLM317158953 
035 |a (NLM)33147685 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a You, Chong  |e verfasserin  |4 aut 
245 1 0 |a Self-Representation Based Unsupervised Exemplar Selection in a Union of Subspaces 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Finding a small set of representatives from an unlabeled dataset is a core problem in a broad range of applications such as dataset summarization and information extraction. Classical exemplar selection methods such as k-medoids work under the assumption that the data points are close to a few cluster centroids, and cannot handle the case where data lie close to a union of subspaces. This paper proposes a new exemplar selection model that searches for a subset that best reconstructs all data points as measured by the l1 norm of the representation coefficients. Geometrically, this subset best covers all the data points as measured by the Minkowski functional of the subset. To solve our model efficiently, we introduce a farthest first search algorithm that iteratively selects the worst represented point as an exemplar. When the dataset is drawn from a union of independent subspaces, our method is able to select sufficiently many representatives from each subspace. We further develop an exemplar based subspace clustering method that is robust to imbalanced data and efficient for large scale data. Moreover, we show that a classifier trained on the selected exemplars (when they are labeled) can correctly classify the rest of the data points 
650 4 |a Journal Article 
700 1 |a Li, Chi  |e verfasserin  |4 aut 
700 1 |a Robinson, Daniel P  |e verfasserin  |4 aut 
700 1 |a Vidal, Rene  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 5 vom: 15. Mai, Seite 2698-2711  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:5  |g day:15  |g month:05  |g pages:2698-2711 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3035599  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 5  |b 15  |c 05  |h 2698-2711