JHU-CROWD++ : Large-Scale Crowd Counting Dataset and A Benchmark Method

We introduce a new large scale unconstrained crowd counting dataset (JHU-CROWD++) that contains "4,372" images with "1.51 million" annotations. In comparison to existing datasets, the proposed dataset is collected under a variety of diverse scenarios and environmental conditions....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 5 vom: 04. Mai, Seite 2594-2609
1. Verfasser: Sindagi, Vishwanath A (VerfasserIn)
Weitere Verfasser: Yasarla, Rajeev, Patel, Vishal M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM317153676
003 DE-627
005 20231225162636.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3035969  |2 doi 
028 5 2 |a pubmed24n1057.xml 
035 |a (DE-627)NLM317153676 
035 |a (NLM)33147141 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sindagi, Vishwanath A  |e verfasserin  |4 aut 
245 1 0 |a JHU-CROWD++  |b Large-Scale Crowd Counting Dataset and A Benchmark Method 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2022 
500 |a Date Revised 09.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We introduce a new large scale unconstrained crowd counting dataset (JHU-CROWD++) that contains "4,372" images with "1.51 million" annotations. In comparison to existing datasets, the proposed dataset is collected under a variety of diverse scenarios and environmental conditions. Specifically, the dataset includes several images with weather-based degradations and illumination variations, making it a very challenging dataset. Additionally, the dataset consists of a rich set of annotations at both image-level and head-level. Several recent methods are evaluated and compared on this dataset. The dataset can be downloaded from http://www.crowd-counting.com. Furthermore, we propose a novel crowd counting network that progressively generates crowd density maps via residual error estimation. The proposed method uses VGG16 as the backbone network and employs density map generated by the final layer as a coarse prediction to refine and generate finer density maps in a progressive fashion using residual learning. Additionally, the residual learning is guided by an uncertainty-based confidence weighting mechanism that permits the flow of only high-confidence residuals in the refinement path. The proposed Confidence Guided Deep Residual Counting Network (CG-DRCN) is evaluated on recent complex datasets, and it achieves significant improvements In errors 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Yasarla, Rajeev  |e verfasserin  |4 aut 
700 1 |a Patel, Vishal M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 5 vom: 04. Mai, Seite 2594-2609  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:5  |g day:04  |g month:05  |g pages:2594-2609 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3035969  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 5  |b 04  |c 05  |h 2594-2609