One-Shot Neural Architecture Search : Maximising Diversity to Overcome Catastrophic Forgetting

One-shot neural architecture search (NAS) has recently become mainstream in the NAS community because it significantly improves computational efficiency through weight sharing. However, the supernet training paradigm in one-shot NAS introduces catastrophic forgetting, where each step of the training...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 9 vom: 04. Sept., Seite 2921-2935
1. Verfasser: Zhang, Miao (VerfasserIn)
Weitere Verfasser: Li, Huiqi, Pan, Shirui, Chang, Xiaojun, Zhou, Chuan, Ge, Zongyuan, Su, Steven
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM317153668
003 DE-627
005 20231225162636.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3035351  |2 doi 
028 5 2 |a pubmed24n1057.xml 
035 |a (DE-627)NLM317153668 
035 |a (NLM)33147140 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Miao  |e verfasserin  |4 aut 
245 1 0 |a One-Shot Neural Architecture Search  |b Maximising Diversity to Overcome Catastrophic Forgetting 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.09.2021 
500 |a Date Revised 29.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a One-shot neural architecture search (NAS) has recently become mainstream in the NAS community because it significantly improves computational efficiency through weight sharing. However, the supernet training paradigm in one-shot NAS introduces catastrophic forgetting, where each step of the training can deteriorate the performance of other architectures that contain partially-shared weights with current architecture. To overcome this problem of catastrophic forgetting, we formulate supernet training for one-shot NAS as a constrained continual learning optimization problem such that learning the current architecture does not degrade the validation accuracy of previous architectures. The key to solving this constrained optimization problem is a novelty search based architecture selection (NSAS) loss function that regularizes the supernet training by using a greedy novelty search method to find the most representative subset. We applied the NSAS loss function to two one-shot NAS baselines and extensively tested them on both a common search space and a NAS benchmark dataset. We further derive three variants based on the NSAS loss function, the NSAS with depth constrain (NSAS-C) to improve the transferability, and NSAS-G and NSAS-LG to handle the situation with a limited number of constraints. The experiments on the common NAS search space demonstrate that NSAS and it variants improve the predictive ability of supernet training in one-shot NAS with remarkable and efficient performance on the CIFAR-10, CIFAR-100, and ImageNet datasets. The results with the NAS benchmark dataset also confirm the significant improvements these one-shot NAS baselines can make 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Li, Huiqi  |e verfasserin  |4 aut 
700 1 |a Pan, Shirui  |e verfasserin  |4 aut 
700 1 |a Chang, Xiaojun  |e verfasserin  |4 aut 
700 1 |a Zhou, Chuan  |e verfasserin  |4 aut 
700 1 |a Ge, Zongyuan  |e verfasserin  |4 aut 
700 1 |a Su, Steven  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 9 vom: 04. Sept., Seite 2921-2935  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:9  |g day:04  |g month:09  |g pages:2921-2935 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3035351  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 9  |b 04  |c 09  |h 2921-2935