|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM317147692 |
003 |
DE-627 |
005 |
20231225162629.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.0c01767
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1057.xml
|
035 |
|
|
|a (DE-627)NLM317147692
|
035 |
|
|
|a (NLM)33146540
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Janowicz, Norbert J
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Fluorine-Free Transparent Superhydrophobic Nanocomposite Coatings from Mesoporous Silica
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 17.11.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a In recent decades, there has been a growing interest in the development of functional, fluorine-free superhydrophobic surfaces with improved adhesion for better applicability into real-world problems. Here, we compare two different methods, spin coating and aerosol-assisted chemical vapor deposition (AACVD), for the synthesis of transparent fluorine-free superhydrophobic coatings. The material was made from a nanocomposite of (3-aminopropyl)triethoxysilane (APTES) functional mesoporous silica nanoparticles and titanium cross-linked polydimethylsiloxane with particle concentrations between 9 to 50 wt %. The silane that was used to lower the surface energy consisted of a long hydrocarbon chain without fluorine groups to reduce the environmental impact of the composite coating. Both spin coating and AACVD resulted in the formation of superhydrophobic surfaces with advancing contact angles up to 168°, a hysteresis of 3°, and a transparency of 90% at 550 nm. AACVD has proven to produce more uniform coatings with concentrations as low as 9 wt %, reaching superhydrophobicity. The metal oxide cross-linking improves the adhesion of the coating to the glass. Overall, AACVD was the more optimal method to prepare superhydrophobic coatings compared to spin coating due to higher contact angles, adhesion, and scalability of the fabrication process
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Li, Hangtong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Heale, Frances L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Parkin, Ivan P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Papakonstantinou, Ioannis
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tiwari, Manish K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Carmalt, Claire J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 36(2020), 45 vom: 17. Nov., Seite 13426-13438
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2020
|g number:45
|g day:17
|g month:11
|g pages:13426-13438
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.0c01767
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2020
|e 45
|b 17
|c 11
|h 13426-13438
|