Lattice-Distortion-Enhanced Yield Strength in a Refractory High-Entropy Alloy
© 2020 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 49 vom: 15. Dez., Seite e2004029 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article NbTaTiVZr alloy-design strategies lattice distortion microstructure refractory high-entropy alloys yield strength |
Zusammenfassung: | © 2020 Wiley-VCH GmbH. Severe distortion is one of the four core effects in single-phase high-entropy alloys (HEAs) and contributes significantly to the yield strength. However, the connection between the atomic-scale lattice distortion and macro-scale mechanical properties through experimental verification has yet to be fully achieved, owing to two critical challenges: 1) the difficulty in the development of homogeneous single-phase solid-solution HEAs and 2) the ambiguity in describing the lattice distortion and related measurements and calculations. A single-phase body-centered-cubic (BCC) refractory HEA, NbTaTiVZr, using thermodynamic modeling coupled with experimental verifications, is developed. Compared to the previously developed single-phase NbTaTiV HEA, the NbTaTiVZr HEA shows a higher yield strength and comparable plasticity. The increase in yield strength is systematically and quantitatively studied in terms of lattice distortion using a theoretical model, first-principles calculations, synchrotron X-ray/neutron diffraction, atom-probe tomography, and scanning transmission electron microscopy techniques. These results demonstrate that severe lattice distortion is a core factor for developing high strengths in refractory HEAs |
---|---|
Beschreibung: | Date Revised 22.02.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202004029 |