Comprehensive epigenome and transcriptome analysis of carbon reserve remobilization in indica and japonica rice stems under moderate soil drying

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 72(2021), 4 vom: 24. Feb., Seite 1384-1398
1. Verfasser: Wang, Guanqun (VerfasserIn)
Weitere Verfasser: Li, Xiaozheng, Li, Yongqiang, Ye, Nenghui, Li, Haoxuan, Zhang, Jianhua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't indica japonica Carbon reserve DNA methylation grain filling soil drying transcriptome Soil mehr... Carbon 7440-44-0
Beschreibung
Zusammenfassung:© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Moderate soil drying (MD) imposed at the post-anthesis stage significantly improves carbon reserve remobilization in rice stems, increasing grain yield. However, the methylome and transcriptome profiles of carbon reserve remobilization under MD are obscure in indica and japonica rice stems. Here, we generated whole-genome single-base resolution maps of the DNA methylome in indica and japonica rice stems. DNA methylation levels were higher in indica than in japonica and positively correlated with genome size. MD treatment had a weak impact on the changes in methylation levels in indica. Moreover, the number of differentially methylated regions was much lower in indica, indicating the existence of cultivar-specific methylation patterns in response to MD during grain filling. The gene encoding β-glucosidase 1, involved in the starch degradation process, was hypomethylated and up-regulated in indica, resulting in improved starch to sucrose conversion under MD treatment. Additionally, increased expression of MYBS1 transactivated the expression of AMYC2/OsAMY2A in both indica and japonica, leading to enhanced starch degradation under MD. In contrast, down-regulated expression of MYB30 resulted in increased expression of BMY5 in both cultivars. Our findings decode the dynamics of DNA methylation in indica and japonica rice stems and propose candidate genes for improving carbon reserve remobilization
Beschreibung:Date Completed 20.05.2021
Date Revised 20.05.2021
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/eraa502