Hierarchical Paired Channel Fusion Network for Street Scene Change Detection

Street Scene Change Detection (SSCD) aims to locate the changed regions between a given street-view image pair captured at different times, which is an important yet challenging task in the computer vision community. The intuitive way to solve the SSCD task is to fuse the extracted image feature pai...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 19., Seite 55-67
1. Verfasser: Lei, Yinjie (VerfasserIn)
Weitere Verfasser: Peng, Duo, Zhang, Pingping, Ke, Qiuhong, Li, Haifeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM316938289
003 DE-627
005 20231225162151.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3031173  |2 doi 
028 5 2 |a pubmed24n1056.xml 
035 |a (DE-627)NLM316938289 
035 |a (NLM)33125327 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lei, Yinjie  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical Paired Channel Fusion Network for Street Scene Change Detection 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.05.2021 
500 |a Date Revised 20.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Street Scene Change Detection (SSCD) aims to locate the changed regions between a given street-view image pair captured at different times, which is an important yet challenging task in the computer vision community. The intuitive way to solve the SSCD task is to fuse the extracted image feature pairs, and then directly measure the dissimilarity parts for producing a change map. Therefore, the key for the SSCD task is to design an effective feature fusion method that can improve the accuracy of the corresponding change maps. To this end, we present a novel Hierarchical Paired Channel Fusion Network (HPCFNet), which utilizes the adaptive fusion of paired feature channels. Specifically, the features of a given image pair are jointly extracted by a Siamese Convolutional Neural Network (SCNN) and hierarchically combined by exploring the fusion of channel pairs at multiple feature levels. In addition, based on the observation that the distribution of scene changes is diverse, we further propose a Multi-Part Feature Learning (MPFL) strategy to detect diverse changes. Based on the MPFL strategy, our framework achieves a novel approach to adapt to the scale and location diversities of the scene change regions. Extensive experiments on three public datasets (i.e., PCD, VL-CMU-CD and CDnet2014) demonstrate that the proposed framework achieves superior performance which outperforms other state-of-the-art methods with a considerable margin 
650 4 |a Journal Article 
700 1 |a Peng, Duo  |e verfasserin  |4 aut 
700 1 |a Zhang, Pingping  |e verfasserin  |4 aut 
700 1 |a Ke, Qiuhong  |e verfasserin  |4 aut 
700 1 |a Li, Haifeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 19., Seite 55-67  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:19  |g pages:55-67 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3031173  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 19  |h 55-67