Density-based clustering of crystal (mis)orientations and the orix Python library

© Duncan N. Johnstone et al. 2020.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 53(2020), Pt 5 vom: 01. Okt., Seite 1293-1298
1. Verfasser: Johnstone, Duncan N (VerfasserIn)
Weitere Verfasser: Martineau, Ben H, Crout, Phillip, Midgley, Paul A, Eggeman, Alexander S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article Python computer programs crystal orientations data clustering fundamental zones
LEADER 01000caa a22002652 4500
001 NLM316857092
003 DE-627
005 20240329235955.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576720011103  |2 doi 
028 5 2 |a pubmed24n1355.xml 
035 |a (DE-627)NLM316857092 
035 |a (NLM)33117110 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Johnstone, Duncan N  |e verfasserin  |4 aut 
245 1 0 |a Density-based clustering of crystal (mis)orientations and the orix Python library 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.03.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Duncan N. Johnstone et al. 2020. 
520 |a Crystal orientation mapping experiments typically measure orientations that are similar within grains and misorientations that are similar along grain boundaries. Such (mis)orientation data cluster in (mis)orientation space, and clusters are more pronounced if preferred orientations or special orientation relationships are present. Here, cluster analysis of (mis)orientation data is described and demonstrated using distance metrics incorporating crystal symmetry and the density-based clustering algorithm DBSCAN. Frequently measured (mis)orientations are identified as corresponding to similarly (mis)oriented grains or grain boundaries, which are visualized both spatially and in three-dimensional (mis)orientation spaces. An example is presented identifying deformation twinning modes in titanium, highlighting a key application of the clustering approach in identifying crystallographic orientation relationships and similarly oriented grains resulting from specific transformation pathways. A new open-source Python library, orix, that enabled this work is also reported 
650 4 |a Journal Article 
650 4 |a Python 
650 4 |a computer programs 
650 4 |a crystal orientations 
650 4 |a data clustering 
650 4 |a fundamental zones 
700 1 |a Martineau, Ben H  |e verfasserin  |4 aut 
700 1 |a Crout, Phillip  |e verfasserin  |4 aut 
700 1 |a Midgley, Paul A  |e verfasserin  |4 aut 
700 1 |a Eggeman, Alexander S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 53(2020), Pt 5 vom: 01. Okt., Seite 1293-1298  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:53  |g year:2020  |g number:Pt 5  |g day:01  |g month:10  |g pages:1293-1298 
856 4 0 |u http://dx.doi.org/10.1107/S1600576720011103  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 53  |j 2020  |e Pt 5  |b 01  |c 10  |h 1293-1298