Visual cohort comparison for spatial single-cell omics-data

Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regula...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 2 vom: 27. Feb., Seite 733-743
1. Verfasser: Somarakis, Antonios (VerfasserIn)
Weitere Verfasser: Ijsselsteijn, Marieke E, Luk, Sietse J, Kenkhuis, Boyd, de Miranda, Noel F C C, Lelieveldt, Boudewijn P F, Hollt, Thomas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM316813613
003 DE-627
005 20231225161908.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3030336  |2 doi 
028 5 2 |a pubmed24n1056.xml 
035 |a (DE-627)NLM316813613 
035 |a (NLM)33112747 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Somarakis, Antonios  |e verfasserin  |4 aut 
245 1 0 |a Visual cohort comparison for spatial single-cell omics-data 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.01.2022 
500 |a Date Revised 13.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow, we conducted multiple case studies with domain experts from different application areas and with different data modalities 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ijsselsteijn, Marieke E  |e verfasserin  |4 aut 
700 1 |a Luk, Sietse J  |e verfasserin  |4 aut 
700 1 |a Kenkhuis, Boyd  |e verfasserin  |4 aut 
700 1 |a de Miranda, Noel F C C  |e verfasserin  |4 aut 
700 1 |a Lelieveldt, Boudewijn P F  |e verfasserin  |4 aut 
700 1 |a Hollt, Thomas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 2 vom: 27. Feb., Seite 733-743  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:2  |g day:27  |g month:02  |g pages:733-743 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3030336  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 2  |b 27  |c 02  |h 733-743