Robust Tensor Decomposition for Image Representation Based on Generalized Correntropy
Traditional tensor decomposition methods, e.g., two dimensional principal component analysis and two dimensional singular value decomposition, that minimize mean square errors, are sensitive to outliers. To overcome this problem, in this paper we propose a new robust tensor decomposition method usin...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 27., Seite 150-162 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Traditional tensor decomposition methods, e.g., two dimensional principal component analysis and two dimensional singular value decomposition, that minimize mean square errors, are sensitive to outliers. To overcome this problem, in this paper we propose a new robust tensor decomposition method using generalized correntropy criterion (Corr-Tensor). A Lagrange multiplier method is used to effectively optimize the generalized correntropy objective function in an iterative manner. The Corr-Tensor can effectively improve the robustness of tensor decomposition with the existence of outliers without introducing any extra computational cost. Experimental results demonstrated that the proposed method significantly reduces the reconstruction error on face reconstruction and improves the accuracies on handwritten digit recognition and facial image clustering |
---|---|
Beschreibung: | Date Revised 19.11.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2020.3033151 |