InterFaceGAN : Interpreting the Disentangled Face Representation Learned by GANs

Although generative adversarial networks (GANs) have made significant progress in face synthesis, there lacks enough understanding of what GANs have learned in the latent representation to map a random code to a photo-realistic image. In this work, we propose a framework called InterFaceGAN to inter...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 4 vom: 27. Apr., Seite 2004-2018
1. Verfasser: Shen, Yujun (VerfasserIn)
Weitere Verfasser: Yang, Ceyuan, Tang, Xiaoou, Zhou, Bolei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't