InterFaceGAN : Interpreting the Disentangled Face Representation Learned by GANs
Although generative adversarial networks (GANs) have made significant progress in face synthesis, there lacks enough understanding of what GANs have learned in the latent representation to map a random code to a photo-realistic image. In this work, we propose a framework called InterFaceGAN to inter...
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 4 vom: 27. Apr., Seite 2004-2018 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2022
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence |
Sujets: | Journal Article Research Support, Non-U.S. Gov't |
Accès en ligne |
Volltext |