InterFaceGAN : Interpreting the Disentangled Face Representation Learned by GANs

Although generative adversarial networks (GANs) have made significant progress in face synthesis, there lacks enough understanding of what GANs have learned in the latent representation to map a random code to a photo-realistic image. In this work, we propose a framework called InterFaceGAN to inter...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 4 vom: 27. Apr., Seite 2004-2018
Auteur principal: Shen, Yujun (Auteur)
Autres auteurs: Yang, Ceyuan, Tang, Xiaoou, Zhou, Bolei
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't