Self-Winding Gelatin-Amyloid Wires for Soft Actuators and Sensors

© 2020 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 48 vom: 05. Dez., Seite e2004941
1. Verfasser: Lutz-Bueno, Viviane (VerfasserIn)
Weitere Verfasser: Bolisetty, Sreenath, Azzari, Paride, Handschin, Stephan, Mezzenga, Raffaele
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article biopolymers chiral perversions, composites dry-spinning hybrids magnetic sensors self-winding Amyloid Gelatin 9000-70-8
LEADER 01000naa a22002652 4500
001 NLM316721255
003 DE-627
005 20231225161709.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202004941  |2 doi 
028 5 2 |a pubmed24n1055.xml 
035 |a (DE-627)NLM316721255 
035 |a (NLM)33103302 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lutz-Bueno, Viviane  |e verfasserin  |4 aut 
245 1 0 |a Self-Winding Gelatin-Amyloid Wires for Soft Actuators and Sensors 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.08.2021 
500 |a Date Revised 11.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 Wiley-VCH GmbH. 
520 |a The origin of self-winding mechanisms in plants' tendrils has fascinated scientists for centuries and continues to inspire developments in material science and nanotechnology. Here, bioinspired water-responsive wires that replicate these mechanisms, including the formation of coils and chiral perversions, are presented. A right-handed gelatin matrix is loaded with rigid left-handed amyloid fibrils and roll-dry-spun into wires in which self-winding activation emerges from simultaneous bending and twisting deformations. Wire bending is a consequence of amyloid fibrils' concentration and distribution within the wire, whereas twisting is controlled by amyloid fibrils' orientation. The resultant wires can be functionalized by organic molecules and inorganic nanoparticles, and potential applications in magnetic actuators and sensors are demonstrated. The simple fabrication method and the remarkable spontaneous self-winding response of these gelatin-amyloid wires exemplify how biomaterials based on mixed proteins have striking potential to develop advanced and tunable properties that can serve robotics, soft machines, and engineering systems 
650 4 |a Journal Article 
650 4 |a biopolymers 
650 4 |a chiral perversions, composites 
650 4 |a dry-spinning 
650 4 |a hybrids 
650 4 |a magnetic sensors 
650 4 |a self-winding 
650 7 |a Amyloid  |2 NLM 
650 7 |a Gelatin  |2 NLM 
650 7 |a 9000-70-8  |2 NLM 
700 1 |a Bolisetty, Sreenath  |e verfasserin  |4 aut 
700 1 |a Azzari, Paride  |e verfasserin  |4 aut 
700 1 |a Handschin, Stephan  |e verfasserin  |4 aut 
700 1 |a Mezzenga, Raffaele  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 48 vom: 05. Dez., Seite e2004941  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:48  |g day:05  |g month:12  |g pages:e2004941 
856 4 0 |u http://dx.doi.org/10.1002/adma.202004941  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 48  |b 05  |c 12  |h e2004941