Integrating Prior Knowledge in Mixed-Initiative Social Network Clustering

We propose a new approach-called PK-clustering-to help social scientists create meaningful clusters in social networks. Many clustering algorithms exist but most social scientists find them difficult to understand, and tools do not provide any guidance to choose algorithms, or to evaluate results ta...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 2 vom: 09. Feb., Seite 1775-1785
1. Verfasser: Pister, Alexis (VerfasserIn)
Weitere Verfasser: Buono, Paolo, Fekete, Jean-Daniel, Plaisant, Catherine, Valdivia, Paola
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM316645834
003 DE-627
005 20231225161534.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3030347  |2 doi 
028 5 2 |a pubmed24n1055.xml 
035 |a (DE-627)NLM316645834 
035 |a (NLM)33095715 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pister, Alexis  |e verfasserin  |4 aut 
245 1 0 |a Integrating Prior Knowledge in Mixed-Initiative Social Network Clustering 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a new approach-called PK-clustering-to help social scientists create meaningful clusters in social networks. Many clustering algorithms exist but most social scientists find them difficult to understand, and tools do not provide any guidance to choose algorithms, or to evaluate results taking into account the prior knowledge of the scientists. Our work introduces a new clustering approach and a visual analytics user interface that address this issue. It is based on a process that 1) captures the prior knowledge of the scientists as a set of incomplete clusters, 2) runs multiple clustering algorithms (similarly to clustering ensemble methods), 3) visualizes the results of all the algorithms ranked and summarized by how well each algorithm matches the prior knowledge, 4) evaluates the consensus between user-selected algorithms and 5) allows users to review details and iteratively update the acquired knowledge. We describe our approach using an initial functional prototype, then provide two examples of use and early feedback from social scientists. We believe our clustering approach offers a novel constructive method to iteratively build knowledge while avoiding being overly influenced by the results of often randomly selected black-box clustering algorithms 
650 4 |a Journal Article 
700 1 |a Buono, Paolo  |e verfasserin  |4 aut 
700 1 |a Fekete, Jean-Daniel  |e verfasserin  |4 aut 
700 1 |a Plaisant, Catherine  |e verfasserin  |4 aut 
700 1 |a Valdivia, Paola  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 2 vom: 09. Feb., Seite 1775-1785  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:2  |g day:09  |g month:02  |g pages:1775-1785 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3030347  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 2  |b 09  |c 02  |h 1775-1785