Challenges in Evaluating Interactive Visual Machine Learning Systems

In interactive visual machine learning (IVML), humans and machine learning algorithms collaborate to achieve tasks mediated by interactive visual interfaces. This human-in-the-loop approach to machine learning brings forth not only numerous intelligibility, trust, and usability issues, but also many...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE computer graphics and applications. - 1991. - 40(2020), 6 vom: 09. Nov., Seite 88-96
1. Verfasser: Boukhelifa, N (VerfasserIn)
Weitere Verfasser: Bezerianos, A, Chang, R, Collins, C, Drucker, S, Endert, A, Hullman, J, North, C, Sedlmair, M, Rhyne, Theresa-Marie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE computer graphics and applications
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In interactive visual machine learning (IVML), humans and machine learning algorithms collaborate to achieve tasks mediated by interactive visual interfaces. This human-in-the-loop approach to machine learning brings forth not only numerous intelligibility, trust, and usability issues, but also many open questions with respect to the evaluation of the IVML system, both as separate components, and as a holistic entity that includes both human and machine intelligence. This article describes the challenges and research gaps identified in an IEEE VIS workshop on the evaluation of IVML systems
Beschreibung:Date Completed 19.02.2021
Date Revised 19.02.2021
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1558-1756
DOI:10.1109/MCG.2020.3017064