Material Design of Aqueous Redox Flow Batteries : Fundamental Challenges and Mitigation Strategies

© 2020 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 47 vom: 30. Nov., Seite e2002132
1. Verfasser: Li, Zhejun (VerfasserIn)
Weitere Verfasser: Lu, Yi-Chun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review aqueous redox flow batteries energy storage redox active materials redox reactions
LEADER 01000naa a22002652 4500
001 NLM316634166
003 DE-627
005 20231225161519.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202002132  |2 doi 
028 5 2 |a pubmed24n1055.xml 
035 |a (DE-627)NLM316634166 
035 |a (NLM)33094532 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Zhejun  |e verfasserin  |4 aut 
245 1 0 |a Material Design of Aqueous Redox Flow Batteries  |b Fundamental Challenges and Mitigation Strategies 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.11.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Wiley-VCH GmbH. 
520 |a Redox flow batteries (RFBs) are critical enablers for next-generation grid-scale energy-storage systems, due to their scalability and flexibility in decoupling power and energy. Aqueous RFBs (ARFBs) using nonflammable electrolytes are intrinsically safe. However, their development has been limited by their low energy density and high cost. Developing ARFBs with higher energy density, lower cost, and longer lifespan than the current standard is of significant interest to academic and industrial research communities. Here, a critical review of the latest progress on advanced electrolyte material designs of ARFBs is presented, including a fundamental overview of their physicochemical properties, major challenges, and design strategies. Assessment methodologies and metrics for the evaluation of RFB stability are discussed. Finally, future directions for material design to realize practical applications and achieve the commercialization of ARFB energy-storage systems are highlighted 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a aqueous redox flow batteries 
650 4 |a energy storage 
650 4 |a redox active materials 
650 4 |a redox reactions 
700 1 |a Lu, Yi-Chun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 47 vom: 30. Nov., Seite e2002132  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:47  |g day:30  |g month:11  |g pages:e2002132 
856 4 0 |u http://dx.doi.org/10.1002/adma.202002132  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 47  |b 30  |c 11  |h e2002132