|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM316634166 |
003 |
DE-627 |
005 |
20231225161519.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202002132
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1055.xml
|
035 |
|
|
|a (DE-627)NLM316634166
|
035 |
|
|
|a (NLM)33094532
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Zhejun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Material Design of Aqueous Redox Flow Batteries
|b Fundamental Challenges and Mitigation Strategies
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.11.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 Wiley-VCH GmbH.
|
520 |
|
|
|a Redox flow batteries (RFBs) are critical enablers for next-generation grid-scale energy-storage systems, due to their scalability and flexibility in decoupling power and energy. Aqueous RFBs (ARFBs) using nonflammable electrolytes are intrinsically safe. However, their development has been limited by their low energy density and high cost. Developing ARFBs with higher energy density, lower cost, and longer lifespan than the current standard is of significant interest to academic and industrial research communities. Here, a critical review of the latest progress on advanced electrolyte material designs of ARFBs is presented, including a fundamental overview of their physicochemical properties, major challenges, and design strategies. Assessment methodologies and metrics for the evaluation of RFB stability are discussed. Finally, future directions for material design to realize practical applications and achieve the commercialization of ARFB energy-storage systems are highlighted
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a aqueous redox flow batteries
|
650 |
|
4 |
|a energy storage
|
650 |
|
4 |
|a redox active materials
|
650 |
|
4 |
|a redox reactions
|
700 |
1 |
|
|a Lu, Yi-Chun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 47 vom: 30. Nov., Seite e2002132
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:47
|g day:30
|g month:11
|g pages:e2002132
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202002132
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 47
|b 30
|c 11
|h e2002132
|