|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM316589071 |
003 |
DE-627 |
005 |
20231225161420.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202005802
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1055.xml
|
035 |
|
|
|a (DE-627)NLM316589071
|
035 |
|
|
|a (NLM)33089951
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Yu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Co-Construction of Sulfur Vacancies and Heterojunctions in Tungsten Disulfide to Induce Fast Electronic/Ionic Diffusion Kinetics for Sodium-Ion Batteries
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.11.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 Wiley-VCH GmbH.
|
520 |
|
|
|a Engineering novel electrode materials with unique architectures has a significant impact on tuning the structural/electrochemical properties for boosting the performance of secondary battery systems. Herein, starting from well-organized WS2 nanorods, an ingenious design of a one-step method is proposed to prepare a bimetallic sulfide composite with a coaxial carbon coating layer, simply enabled by ZIF-8 introduction. Rich sulfur vacancies and WS2 /ZnS heterojunctions can be simultaneously developed, that significantly improve ionic and electronic diffusion kinetics. In addition, a homogeneous carbon protective layer around the surface of the composite guarantees an outstanding structural stability, a reversible capacity of 170.8 mAh g-1 after 5000 cycles at a high rate of 5 A g-1 . A great potential in practical application is also exhibited, where a full cell based on the WS2- x /ZnSC anode and the P2-Na2/3 Ni1/3 Mn1/3 O2 cathode can maintain a reversible capacity of 89.4 mAh g-1 after 500 cycles at 1 A g-1 . Moreover, the underlying electrochemical Na storage mechanisms are illustrated in detail by theoretical calculations, electrochemical kinetic analysis, and operando X-ray diffraction characterization
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a anodes
|
650 |
|
4 |
|a bimetallic sulfides
|
650 |
|
4 |
|a heterojunctions
|
650 |
|
4 |
|a sodium-ion batteries
|
650 |
|
4 |
|a sulfur vacancies
|
700 |
1 |
|
|a Qian, Ji
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Minghao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Shuo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Zhaohua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Maosheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bai, Ying
|e verfasserin
|4 aut
|
700 |
1 |
|
|a An, Qinyou
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Huajie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Feng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mai, Liqiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Chuan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 47 vom: 04. Nov., Seite e2005802
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:47
|g day:04
|g month:11
|g pages:e2005802
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202005802
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 47
|b 04
|c 11
|h e2005802
|