Learning Multi-Attention Context Graph for Group-Based Re-Identification

Learning to re-identify or retrieve a group of people across non-overlapped camera systems has important applications in video surveillance. However, most existing methods focus on (single) person re-identification (re-id), ignoring the fact that people often walk in groups in real scenarios. In thi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 6 vom: 12. Juni, Seite 7001-7018
1. Verfasser: Yan, Yichao (VerfasserIn)
Weitere Verfasser: Qin, Jie, Ni, Bingbing, Chen, Jiaxin, Liu, Li, Zhu, Fan, Zheng, Wei-Shi, Yang, Xiaokang, Shao, Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM316489301
003 DE-627
005 20231225161207.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3032542  |2 doi 
028 5 2 |a pubmed24n1054.xml 
035 |a (DE-627)NLM316489301 
035 |a (NLM)33079658 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yan, Yichao  |e verfasserin  |4 aut 
245 1 0 |a Learning Multi-Attention Context Graph for Group-Based Re-Identification 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.05.2023 
500 |a Date Revised 07.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Learning to re-identify or retrieve a group of people across non-overlapped camera systems has important applications in video surveillance. However, most existing methods focus on (single) person re-identification (re-id), ignoring the fact that people often walk in groups in real scenarios. In this work, we take a step further and consider employing context information for identifying groups of people, i.e., group re-id. On the one hand, group re-id is more challenging than single person re-id, since it requires both a robust modeling of local individual person appearance (with different illumination conditions, pose/viewpoint variations, and occlusions), as well as full awareness of global group structures (with group layout and group member variations). On the other hand, we believe that person re-id can be greatly enhanced by incorporating additional visual context from neighboring group members, a task which we formulate as group-aware (single) person re-id. In this paper, we propose a novel unified framework based on graph neural networks to simultaneously address the above two group-based re-id tasks, i.e., group re-id and group-aware person re-id. Specifically, we construct a context graph with group members as its nodes to exploit dependencies among different people. A multi-level attention mechanism is developed to formulate both intra-group and inter-group context, with an additional self-attention module for robust graph-level representations by attentively aggregating node-level features. The proposed model can be directly generalized to tackle group-aware person re-id using node-level representations. Meanwhile, to facilitate the deployment of deep learning models on these tasks, we build a new group re-id dataset which contains more than 3.8K images with 1.5K annotated groups, an order of magnitude larger than existing group re-id datasets. Extensive experiments on the novel dataset as well as three existing datasets clearly demonstrate the effectiveness of the proposed framework for both group-based re-id tasks 
650 4 |a Journal Article 
700 1 |a Qin, Jie  |e verfasserin  |4 aut 
700 1 |a Ni, Bingbing  |e verfasserin  |4 aut 
700 1 |a Chen, Jiaxin  |e verfasserin  |4 aut 
700 1 |a Liu, Li  |e verfasserin  |4 aut 
700 1 |a Zhu, Fan  |e verfasserin  |4 aut 
700 1 |a Zheng, Wei-Shi  |e verfasserin  |4 aut 
700 1 |a Yang, Xiaokang  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 6 vom: 12. Juni, Seite 7001-7018  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:6  |g day:12  |g month:06  |g pages:7001-7018 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3032542  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 6  |b 12  |c 06  |h 7001-7018