Beyond ecosystem modeling : A roadmap to community cyberinfrastructure for ecological data-model integration

© 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 1 vom: 08. Jan., Seite 13-26
1. Verfasser: Fer, Istem (VerfasserIn)
Weitere Verfasser: Gardella, Anthony K, Shiklomanov, Alexey N, Campbell, Eleanor E, Cowdery, Elizabeth M, De Kauwe, Martin G, Desai, Ankur, Duveneck, Matthew J, Fisher, Joshua B, Haynes, Katherine D, Hoffman, Forrest M, Johnston, Miriam R, Kooper, Rob, LeBauer, David S, Mantooth, Joshua, Parton, William J, Poulter, Benjamin, Quaife, Tristan, Raiho, Ann, Schaefer, Kevin, Serbin, Shawn P, Simkins, James, Wilcox, Kevin R, Viskari, Toni, Dietze, Michael C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article accessibility benchmarking community cyberinfrastructure data data assimilation ecosystem models interoperability reproducibility
Beschreibung
Zusammenfassung:© 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
In an era of rapid global change, our ability to understand and predict Earth's natural systems is lagging behind our ability to monitor and measure changes in the biosphere. Bottlenecks to informing models with observations have reduced our capacity to fully exploit the growing volume and variety of available data. Here, we take a critical look at the information infrastructure that connects ecosystem modeling and measurement efforts, and propose a roadmap to community cyberinfrastructure development that can reduce the divisions between empirical research and modeling and accelerate the pace of discovery. A new era of data-model integration requires investment in accessible, scalable, and transparent tools that integrate the expertise of the whole community, including both modelers and empiricists. This roadmap focuses on five key opportunities for community tools: the underlying foundations of community cyberinfrastructure; data ingest; calibration of models to data; model-data benchmarking; and data assimilation and ecological forecasting. This community-driven approach is a key to meeting the pressing needs of science and society in the 21st century
Beschreibung:Date Completed 21.04.2021
Date Revised 30.03.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.15409