DECE : Decision Explorer with Counterfactual Explanations for Machine Learning Models

With machine learning models being increasingly applied to various decision-making scenarios, people have spent growing efforts to make machine learning models more transparent and explainable. Among various explanation techniques, counterfactual explanations have the advantages of being human-frien...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1998. - 27(2021), 2 vom: 28. Feb., Seite 1438-1447
Auteur principal: Cheng, Furui (Auteur)
Autres auteurs: Ming, Yao, Qu, Huamin
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM316441686
003 DE-627
005 20250228054313.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3030342  |2 doi 
028 5 2 |a pubmed25n1054.xml 
035 |a (DE-627)NLM316441686 
035 |a (NLM)33074811 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Furui  |e verfasserin  |4 aut 
245 1 0 |a DECE  |b Decision Explorer with Counterfactual Explanations for Machine Learning Models 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.09.2021 
500 |a Date Revised 30.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a With machine learning models being increasingly applied to various decision-making scenarios, people have spent growing efforts to make machine learning models more transparent and explainable. Among various explanation techniques, counterfactual explanations have the advantages of being human-friendly and actionable-a counterfactual explanation tells the user how to gain the desired prediction with minimal changes to the input. Besides, counterfactual explanations can also serve as efficient probes to the models' decisions. In this work, we exploit the potential of counterfactual explanations to understand and explore the behavior of machine learning models. We design DECE, an interactive visualization system that helps understand and explore a model's decisions on individual instances and data subsets, supporting users ranging from decision-subjects to model developers. DECE supports exploratory analysis of model decisions by combining the strengths of counterfactual explanations at instance- and subgroup-levels. We also introduce a set of interactions that enable users to customize the generation of counterfactual explanations to find more actionable ones that can suit their needs. Through three use cases and an expert interview, we demonstrate the effectiveness of DECE in supporting decision exploration tasks and instance explanations 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ming, Yao  |e verfasserin  |4 aut 
700 1 |a Qu, Huamin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 27(2021), 2 vom: 28. Feb., Seite 1438-1447  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:27  |g year:2021  |g number:2  |g day:28  |g month:02  |g pages:1438-1447 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3030342  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 2  |b 28  |c 02  |h 1438-1447