A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning

Although deep convolutional neural networks (CNNs) have demonstrated remarkable performance on multiple computer vision tasks, researches on adversarial learning have shown that deep models are vulnerable to adversarial examples, which are crafted by adding visually imperceptible perturbations to th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 4 vom: 28. Apr., Seite 1725-1737
1. Verfasser: Wang, Hongjun (VerfasserIn)
Weitere Verfasser: Li, Guanbin, Liu, Xiaobai, Lin, Liang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM316441600
003 DE-627
005 20231225161105.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3032061  |2 doi 
028 5 2 |a pubmed24n1054.xml 
035 |a (DE-627)NLM316441600 
035 |a (NLM)33074803 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Hongjun  |e verfasserin  |4 aut 
245 1 2 |a A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.03.2022 
500 |a Date Revised 01.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Although deep convolutional neural networks (CNNs) have demonstrated remarkable performance on multiple computer vision tasks, researches on adversarial learning have shown that deep models are vulnerable to adversarial examples, which are crafted by adding visually imperceptible perturbations to the input images. Most of the existing adversarial attack methods only create a single adversarial example for the input, which just gives a glimpse of the underlying data manifold of adversarial examples. An attractive solution is to explore the solution space of the adversarial examples and generate a diverse bunch of them, which could potentially improve the robustness of real-world systems and help prevent severe security threats and vulnerabilities. In this paper, we present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples. To improve the efficiency of HMC, we propose a new regime to automatically control the length of trajectories, which allows the algorithm to move with adaptive step sizes along the search direction at different positions. Moreover, we revisit the reason for high computational cost of adversarial training under the view of MCMC and design a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples with only few iterations by building from small modifications of the standard Contrastive Divergence (CD) and achieve a trade-off between efficiency and accuracy. Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Li, Guanbin  |e verfasserin  |4 aut 
700 1 |a Liu, Xiaobai  |e verfasserin  |4 aut 
700 1 |a Lin, Liang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 4 vom: 28. Apr., Seite 1725-1737  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:4  |g day:28  |g month:04  |g pages:1725-1737 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3032061  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 4  |b 28  |c 04  |h 1725-1737