Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C:N ratio, δ13 C-δ15 N, and lignin biomarker

© 2020 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 2 vom: 15. Jan., Seite 417-434
1. Verfasser: Xia, Shaopan (VerfasserIn)
Weitere Verfasser: Song, Zhaoliang, Li, Qiang, Guo, Laodong, Yu, Changxun, Singh, Bhupinder Pal, Fu, Xiaoli, Chen, Chunmei, Wang, Yidong, Wang, Hailong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article SOC fractions lignin biomarker microbial quotient organic carbon stocks sea-level rise tidal wetlands vegetation types Biomarkers Soil mehr... Carbon 7440-44-0 Lignin 9005-53-2
LEADER 01000naa a22002652 4500
001 NLM31637928X
003 DE-627
005 20231225160944.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15403  |2 doi 
028 5 2 |a pubmed24n1054.xml 
035 |a (DE-627)NLM31637928X 
035 |a (NLM)33068483 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xia, Shaopan  |e verfasserin  |4 aut 
245 1 0 |a Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C:N ratio, δ13 C-δ15 N, and lignin biomarker 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.04.2021 
500 |a Date Revised 21.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 John Wiley & Sons Ltd. 
520 |a Despite increasing recognition of the critical role of coastal wetlands in mitigating climate change, sea-level rise, and salinity increase, soil organic carbon (SOC) sequestration mechanisms in estuarine wetlands remain poorly understood. Here, we present new results on the source, decomposition, and storage of SOC in estuarine wetlands with four vegetation types, including single Phragmites australis (P, habitat I), a mixture of P. australis and Suaeda salsa (P + S, habitat II), single S. salsa (S, habitat III), and tidal flat (TF, habitat IV) across a salinity gradient. Values of δ13 C increased with depth in aerobic soil layers (0-40 cm) but slightly decreased in anaerobic soil layers (40-100 cm). The δ15 N was significantly enriched in soil organic matter at all depths than in the living plant tissues, indicating a preferential decomposition of 14 N-enriched organic components. Thus, the kinetic isotope fractionation during microbial degradation and the preferential substrate utilization are the dominant mechanisms in regulating isotopic compositions in aerobic and anaerobic conditions, respectively. Stable isotopic (δ13 C and δ15 N), elemental (C and N), and lignin composition (inherited (Ad/Al)s and C/V) were not completely consistent in reflecting the differences in SOC decomposition or accumulation among four vegetation types, possibly due to differences in litter inputs, root distributions, substrate quality, water-table level, salinity, and microbial community composition/activity. Organic C contents and storage decreased from upstream to downstream, likely due to primarily changes in autochthonous sources (e.g., decreased onsite plant biomass input) and allochthonous materials (e.g., decreased fluvially transported upland river inputs, and increased tidally induced marine algae and phytoplankton). Our results revealed that multiple indicators are essential to unravel the degree of SOC decomposition and accumulation, and a combination of C:N ratios, δ13 C, δ15 N, and lignin biomarker provides a robust approach to decipher the decomposition and source of sedimentary organic matter along the river-estuary-ocean continuum 
650 4 |a Journal Article 
650 4 |a SOC fractions 
650 4 |a lignin biomarker 
650 4 |a microbial quotient 
650 4 |a organic carbon stocks 
650 4 |a sea-level rise 
650 4 |a tidal wetlands 
650 4 |a vegetation types 
650 7 |a Biomarkers  |2 NLM 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Lignin  |2 NLM 
650 7 |a 9005-53-2  |2 NLM 
700 1 |a Song, Zhaoliang  |e verfasserin  |4 aut 
700 1 |a Li, Qiang  |e verfasserin  |4 aut 
700 1 |a Guo, Laodong  |e verfasserin  |4 aut 
700 1 |a Yu, Changxun  |e verfasserin  |4 aut 
700 1 |a Singh, Bhupinder Pal  |e verfasserin  |4 aut 
700 1 |a Fu, Xiaoli  |e verfasserin  |4 aut 
700 1 |a Chen, Chunmei  |e verfasserin  |4 aut 
700 1 |a Wang, Yidong  |e verfasserin  |4 aut 
700 1 |a Wang, Hailong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 27(2021), 2 vom: 15. Jan., Seite 417-434  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:2  |g day:15  |g month:01  |g pages:417-434 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15403  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 2  |b 15  |c 01  |h 417-434