From pools to flow : The PROMISE framework for new insights on soil carbon cycling in a changing world

© 2020 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 26(2020), 12 vom: 08. Dez., Seite 6631-6643
1. Verfasser: Waring, Bonnie G (VerfasserIn)
Weitere Verfasser: Sulman, Benjamin N, Reed, Sasha, Smith, A Peyton, Averill, Colin, Creamer, Courtney A, Cusack, Daniela F, Hall, Steven J, Jastrow, Julie D, Jilling, Andrea, Kemner, Kenneth M, Kleber, Markus, Liu, Xiao-Jun Allen, Pett-Ridge, Jennifer, Schulz, Marjorie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article biogeochemical model organic matter organo-mineral interactions pore structure soil carbon soil microbes Soil Carbon 7440-44-0
LEADER 01000naa a22002652 4500
001 NLM316338508
003 DE-627
005 20231225160851.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15365  |2 doi 
028 5 2 |a pubmed24n1054.xml 
035 |a (DE-627)NLM316338508 
035 |a (NLM)33064359 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Waring, Bonnie G  |e verfasserin  |4 aut 
245 1 0 |a From pools to flow  |b The PROMISE framework for new insights on soil carbon cycling in a changing world 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.04.2021 
500 |a Date Revised 31.10.2021 
500 |a published: Print-Electronic 
500 |a CommentIn: Glob Chang Biol. 2021 Jun;27(11):e11-e12. - PMID 33660887 
500 |a Citation Status MEDLINE 
520 |a © 2020 John Wiley & Sons Ltd. 
520 |a Soils represent the largest terrestrial reservoir of organic carbon, and the balance between soil organic carbon (SOC) formation and loss will drive powerful carbon-climate feedbacks over the coming century. To date, efforts to predict SOC dynamics have rested on pool-based models, which assume classes of SOC with internally homogenous physicochemical properties. However, emerging evidence suggests that soil carbon turnover is not dominantly controlled by the chemistry of carbon inputs, but rather by restrictions on microbial access to organic matter in the spatially heterogeneous soil environment. The dynamic processes that control the physicochemical protection of carbon translate poorly to pool-based SOC models; as a result, we are challenged to mechanistically predict how environmental change will impact movement of carbon between soils and the atmosphere. Here, we propose a novel conceptual framework to explore controls on belowground carbon cycling: Probabilistic Representation of Organic Matter Interactions within the Soil Environment (PROMISE). In contrast to traditional model frameworks, PROMISE does not attempt to define carbon pools united by common thermodynamic or functional attributes. Rather, the PROMISE concept considers how SOC cycling rates are governed by the stochastic processes that influence the proximity between microbial decomposers and organic matter, with emphasis on their physical location in the soil matrix. We illustrate the applications of this framework with a new biogeochemical simulation model that traces the fate of individual carbon atoms as they interact with their environment, undergoing biochemical transformations and moving through the soil pore space. We also discuss how the PROMISE framework reshapes dialogue around issues related to SOC management in a changing world. We intend the PROMISE framework to spur the development of new hypotheses, analytical tools, and model structures across disciplines that will illuminate mechanistic controls on the flow of carbon between plant, soil, and atmospheric pools 
650 4 |a Journal Article 
650 4 |a biogeochemical model 
650 4 |a organic matter 
650 4 |a organo-mineral interactions 
650 4 |a pore structure 
650 4 |a soil carbon 
650 4 |a soil microbes 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a Sulman, Benjamin N  |e verfasserin  |4 aut 
700 1 |a Reed, Sasha  |e verfasserin  |4 aut 
700 1 |a Smith, A Peyton  |e verfasserin  |4 aut 
700 1 |a Averill, Colin  |e verfasserin  |4 aut 
700 1 |a Creamer, Courtney A  |e verfasserin  |4 aut 
700 1 |a Cusack, Daniela F  |e verfasserin  |4 aut 
700 1 |a Hall, Steven J  |e verfasserin  |4 aut 
700 1 |a Jastrow, Julie D  |e verfasserin  |4 aut 
700 1 |a Jilling, Andrea  |e verfasserin  |4 aut 
700 1 |a Kemner, Kenneth M  |e verfasserin  |4 aut 
700 1 |a Kleber, Markus  |e verfasserin  |4 aut 
700 1 |a Liu, Xiao-Jun Allen  |e verfasserin  |4 aut 
700 1 |a Pett-Ridge, Jennifer  |e verfasserin  |4 aut 
700 1 |a Schulz, Marjorie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 26(2020), 12 vom: 08. Dez., Seite 6631-6643  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:12  |g day:08  |g month:12  |g pages:6631-6643 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15365  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 12  |b 08  |c 12  |h 6631-6643