|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM31627786X |
003 |
DE-627 |
005 |
20231225160734.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202002873
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1054.xml
|
035 |
|
|
|a (DE-627)NLM31627786X
|
035 |
|
|
|a (NLM)33058247
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Gleeson, Matthew
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Quantitative Polarization-Resolved Second-Harmonic-Generation Microscopy of Glycine Microneedles
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.08.2021
|
500 |
|
|
|a Date Revised 20.08.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2020 Wiley-VCH GmbH.
|
520 |
|
|
|a Second-harmonic generation (SHG) is a nonlinear optical process that can provide disease diagnosis through characterization of biological building blocks such as amino acids, peptides, and proteins. The second-order nonlinear susceptibility tensor χ(2) of a material characterizes its tendency to cause SHG. Here, a method for finding the χ(2) elements from polarization-resolved SHG microscopy in transmission mode is presented. The quantitative framework and analytical approach that corrects for micrometer-scale morphology and birefringence enable the determination and comparison of the SHG susceptibility tensors of β- and γ-phase glycine microneedles. The maximum nonlinear susceptibility coefficients are d33 = 15 pm V-1 for the β and d33 = 5.9 pm V-1 for the γ phase. The results demonstrate glycine as a useful biocompatible nonlinear material. This combination of the analytical model and polarization-resolved SHG transmission microscopy is broadly applicable for quantitative SHG material characterization and diagnostic imaging
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a biomolecules
|
650 |
|
4 |
|a biophotonics
|
650 |
|
4 |
|a molecular crystal allomorphs
|
650 |
|
7 |
|a Glycine
|2 NLM
|
650 |
|
7 |
|a TE7660XO1C
|2 NLM
|
700 |
1 |
|
|a O'Dwyer, Kevin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guerin, Sarah
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rice, Daragh
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Thompson, Damien
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tofail, Syed A M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Silien, Christophe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Ning
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 46 vom: 16. Nov., Seite e2002873
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:46
|g day:16
|g month:11
|g pages:e2002873
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202002873
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 46
|b 16
|c 11
|h e2002873
|