Multi-Task Deep Dual Correlation Filters for Visual Tracking

Correlation filters combined with deep features have delivered impressive results in visual tracking task. However, existing approaches treat deep features produced by different network layers independently, limiting their representation power. To address this issue, this paper proposes a multi-task...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2020) vom: 15. Okt.
1. Verfasser: Zheng, Yuhui (VerfasserIn)
Weitere Verfasser: Liu, Xinyan, Cheng, Xu, Zhang, Kaihua, Wu, Yi, Chen, Shengyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM316246387
003 DE-627
005 20240229142917.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3029897  |2 doi 
028 5 2 |a pubmed24n1303.xml 
035 |a (DE-627)NLM316246387 
035 |a (NLM)33055031 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Yuhui  |e verfasserin  |4 aut 
245 1 0 |a Multi-Task Deep Dual Correlation Filters for Visual Tracking 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Correlation filters combined with deep features have delivered impressive results in visual tracking task. However, existing approaches treat deep features produced by different network layers independently, limiting their representation power. To address this issue, this paper proposes a multi-task deep dual correlation filters (MDDCF) based method for robust visual tracking. First, a new multi-task learning scheme is designed to take full advantage of the multi-level features of deep networks, where target representation with individual features is regarded as a single task. As such, the interdependencies between different levels of features can be better explored. Second, we reformulate the objective function of the dual correlation filters and propose a new alternating optimization method, allowing joint training of the correlation filters and network parameters. Third, we design an effective object template update scheme which can well capture the target appearance variations. Extensive experimental evaluations on seven benchmark datasets show that the proposed MDDCF tracker performs favorably against state-ofthe-art methods 
650 4 |a Journal Article 
700 1 |a Liu, Xinyan  |e verfasserin  |4 aut 
700 1 |a Cheng, Xu  |e verfasserin  |4 aut 
700 1 |a Zhang, Kaihua  |e verfasserin  |4 aut 
700 1 |a Wu, Yi  |e verfasserin  |4 aut 
700 1 |a Chen, Shengyong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2020) vom: 15. Okt.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2020  |g day:15  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3029897  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2020  |b 15  |c 10