Visual Neural Decomposition to Explain Multivariate Data Sets

Investigating relationships between variables in multi-dimensional data sets is a common task for data analysts and engineers. More specifically, it is often valuable to understand which ranges of which input variables lead to particular values of a given target variable. Unfortunately, with an incr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 2 vom: 13. Feb., Seite 1374-1384
1. Verfasser: Knittel, Johannes (VerfasserIn)
Weitere Verfasser: Lalama, Andres, Koch, Steffen, Ertl, Thomas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM316184055
003 DE-627
005 20231225160531.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3030420  |2 doi 
028 5 2 |a pubmed24n1053.xml 
035 |a (DE-627)NLM316184055 
035 |a (NLM)33048724 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Knittel, Johannes  |e verfasserin  |4 aut 
245 1 0 |a Visual Neural Decomposition to Explain Multivariate Data Sets 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.01.2022 
500 |a Date Revised 13.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Investigating relationships between variables in multi-dimensional data sets is a common task for data analysts and engineers. More specifically, it is often valuable to understand which ranges of which input variables lead to particular values of a given target variable. Unfortunately, with an increasing number of independent variables, this process may become cumbersome and time-consuming due to the many possible combinations that have to be explored. In this paper, we propose a novel approach to visualize correlations between input variables and a target output variable that scales to hundreds of variables. We developed a visual model based on neural networks that can be explored in a guided way to help analysts find and understand such correlations. First, we train a neural network to predict the target from the input variables. Then, we visualize the inner workings of the resulting model to help understand relations within the data set. We further introduce a new regularization term for the backpropagation algorithm that encourages the neural network to learn representations that are easier to interpret visually. We apply our method to artificial and real-world data sets to show its utility 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lalama, Andres  |e verfasserin  |4 aut 
700 1 |a Koch, Steffen  |e verfasserin  |4 aut 
700 1 |a Ertl, Thomas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 2 vom: 13. Feb., Seite 1374-1384  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:2  |g day:13  |g month:02  |g pages:1374-1384 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3030420  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 2  |b 13  |c 02  |h 1374-1384