Visual Analytics for Temporal Hypergraph Model Exploration

Many processes, from gene interaction in biology to computer networks to social media, can be modeled more precisely as temporal hypergraphs than by regular graphs. This is because hypergraphs generalize graphs by extending edges to connect any number of vertices, allowing complex relationships to b...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 2 vom: 13. Feb., Seite 550-560
1. Verfasser: Fischer, Maximilian T (VerfasserIn)
Weitere Verfasser: Arya, Devanshu, Streeb, Dirk, Seebacher, Daniel, Keim, Daniel A, Worring, Marcel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM316184039
003 DE-627
005 20231225160531.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3030408  |2 doi 
028 5 2 |a pubmed24n1053.xml 
035 |a (DE-627)NLM316184039 
035 |a (NLM)33048721 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fischer, Maximilian T  |e verfasserin  |4 aut 
245 1 0 |a Visual Analytics for Temporal Hypergraph Model Exploration 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many processes, from gene interaction in biology to computer networks to social media, can be modeled more precisely as temporal hypergraphs than by regular graphs. This is because hypergraphs generalize graphs by extending edges to connect any number of vertices, allowing complex relationships to be described more accurately and predict their behavior over time. However, the interactive exploration and seamless refinement of such hypergraph-based prediction models still pose a major challenge. We contribute Hyper-Matrix, a novel visual analytics technique that addresses this challenge through a tight coupling between machine-learning and interactive visualizations. In particular, the technique incorporates a geometric deep learning model as a blueprint for problem-specific models while integrating visualizations for graph-based and category-based data with a novel combination of interactions for an effective user-driven exploration of hypergraph models. To eliminate demanding context switches and ensure scalability, our matrix-based visualization provides drill-down capabilities across multiple levels of semantic zoom, from an overview of model predictions down to the content. We facilitate a focused analysis of relevant connections and groups based on interactive user-steering for filtering and search tasks, a dynamically modifiable partition hierarchy, various matrix reordering techniques, and interactive model feedback. We evaluate our technique in a case study and through formative evaluation with law enforcement experts using real-world internet forum communication data. The results show that our approach surpasses existing solutions in terms of scalability and applicability, enables the incorporation of domain knowledge, and allows for fast search-space traversal. With the proposed technique, we pave the way for the visual analytics of temporal hypergraphs in a wide variety of domains 
650 4 |a Journal Article 
700 1 |a Arya, Devanshu  |e verfasserin  |4 aut 
700 1 |a Streeb, Dirk  |e verfasserin  |4 aut 
700 1 |a Seebacher, Daniel  |e verfasserin  |4 aut 
700 1 |a Keim, Daniel A  |e verfasserin  |4 aut 
700 1 |a Worring, Marcel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 2 vom: 13. Feb., Seite 550-560  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:2  |g day:13  |g month:02  |g pages:550-560 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3030408  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 2  |b 13  |c 02  |h 550-560