HyperTendril : Visual Analytics for User-Driven Hyperparameter Optimization of Deep Neural Networks

To mitigate the pain of manually tuning hyperparameters of deep neural networks, automated machine learning (AutoML) methods have been developed to search for an optimal set of hyperparameters in large combinatorial search spaces. However, the search results of AutoML methods significantly depend on...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 2 vom: 13. Feb., Seite 1407-1416
1. Verfasser: Park, Heungseok (VerfasserIn)
Weitere Verfasser: Nam, Yoonsoo, Kim, Ji-Hoon, Choo, Jaegul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM316183881
003 DE-627
005 20231225160530.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3030380  |2 doi 
028 5 2 |a pubmed24n1053.xml 
035 |a (DE-627)NLM316183881 
035 |a (NLM)33048706 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Park, Heungseok  |e verfasserin  |4 aut 
245 1 0 |a HyperTendril  |b Visual Analytics for User-Driven Hyperparameter Optimization of Deep Neural Networks 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.01.2022 
500 |a Date Revised 13.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a To mitigate the pain of manually tuning hyperparameters of deep neural networks, automated machine learning (AutoML) methods have been developed to search for an optimal set of hyperparameters in large combinatorial search spaces. However, the search results of AutoML methods significantly depend on initial configurations, making it a non-trivial task to find a proper configuration. Therefore, human intervention via a visual analytic approach bears huge potential in this task. In response, we propose HyperTendril, a web-based visual analytics system that supports user-driven hyperparameter tuning processes in a model-agnostic environment. HyperTendril takes a novel approach to effectively steering hyperparameter optimization through an iterative, interactive tuning procedure that allows users to refine the search spaces and the configuration of the AutoML method based on their own insights from given results. Using HyperTendril, users can obtain insights into the complex behaviors of various hyperparameter search algorithms and diagnose their configurations. In addition, HyperTendril supports variable importance analysis to help the users refine their search spaces based on the analysis of relative importance of different hyperparameters and their interaction effects. We present the evaluation demonstrating how HyperTendril helps users steer their tuning processes via a longitudinal user study based on the analysis of interaction logs and in-depth interviews while we deploy our system in a professional industrial environment 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Nam, Yoonsoo  |e verfasserin  |4 aut 
700 1 |a Kim, Ji-Hoon  |e verfasserin  |4 aut 
700 1 |a Choo, Jaegul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 2 vom: 13. Feb., Seite 1407-1416  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:2  |g day:13  |g month:02  |g pages:1407-1416 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3030380  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 2  |b 13  |c 02  |h 1407-1416