|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM316181501 |
003 |
DE-627 |
005 |
20231225160527.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202004553
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1053.xml
|
035 |
|
|
|a (DE-627)NLM316181501
|
035 |
|
|
|a (NLM)33048428
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Hongwen
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Zinc-Dual-Halogen Battery with a Molten Hydrate Electrolyte
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 07.12.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 Wiley-VCH GmbH.
|
520 |
|
|
|a Halogen redox couples offer several advantages for energy storage such as low cost, high solubility in water, and high redox potential. However, the operational complexity of storing halogens at the oxidation state via liquid-phase media hampers their widespread application in energy-storage devices. Herein, an aqueous zinc-dual-halogen battery system taking the advantages of redox flow batteries (inherent scalability) and intercalation chemistry (high capacity) is designed and fabricated. To enhance specific energy, the designed cell exploits both bromine and chlorine as the cathode redox couples that are present as halozinc complexes in a newly developed molten hydrate electrolyte, which is distinctive to the conventional zinc-bromine batteries. Benefiting from the reversible uptake of halogens at the graphite cathode, exclusive reliance on earth-abundant elements, and membrane-free and possible flow-through configuration, the proposed battery can potentially realize high-performance massive electric energy storage at a reasonable cost
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a aqueous electrolytes
|
650 |
|
4 |
|a molten hydrates
|
650 |
|
4 |
|a redox flow batteries
|
650 |
|
4 |
|a zinc secondary batteries
|
650 |
|
4 |
|a zinc-dual-halogen batteries
|
700 |
1 |
|
|a Chen, Chih-Yao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Hao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zou, Lianli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wei, Yong-Sheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Jialong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Jiachen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Qiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cheng, Peng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 46 vom: 01. Nov., Seite e2004553
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:46
|g day:01
|g month:11
|g pages:e2004553
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202004553
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 46
|b 01
|c 11
|h e2004553
|