Survival strategies based on the hydraulic vulnerability segmentation hypothesis, for the tea plant [Camellia sinensis(L.) O. Kuntze] in long-term drought stress condition

Copyright © 2020 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 156(2020) vom: 01. Nov., Seite 484-493
1. Verfasser: Zhang, Chenyu (VerfasserIn)
Weitere Verfasser: Wang, Minhan, Chen, Jianjiao, Gao, Xizhi, Shao, Chenyu, Lv, Zhidong, Jiao, Haizhen, Xu, Huaqin, Shen, Chengwen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Camellia sinensis (L.) O. Kuntze Drought stress Hydraulic vulnerability segmentation hypothesis Ionomics Metabolomics Flavonoids
Beschreibung
Zusammenfassung:Copyright © 2020 Elsevier Masson SAS. All rights reserved.
Tea plants are important economic perennial crops that can be negatively impacted by drought stress (DS). However, their survival strategies in long-term DS conditions and the accumulation and influence of metabolites and mineral elements (MEs) in their organs, when facing hydraulic vulnerability segmentation, require further investigation. The MEs and metabolites in the leaf, stem, and root after long-term DS (20 d) were examined here, using inductively coupled plasma optical emission spectrometry (ICP-OES) and liquid chromatograph-mass spectrometry (LC-MS). The accumulation patterns of 116 differentially accumulated metabolites (DAMs) and nine MEs were considerably affected in all organs. The concentration of all MEs varied significantly in at least one organ, while the K and Ca levels were markedly altered in all three. Most DAM levels increased in the stem but decreased in the root and leaf, implying that vulnerability segmentation may occur with long-term DS. The typical nitrogen- and carbon-compound levels similarly increased in the stem and decreased in the leaf and root, as the plant might respond to long-term DS by stabilizing respiration, promoting nitrogen recycling, and free radical scavenging. Correlation analysis showed several possible DAM-ME interactions and an association between Mn and flavonoids. Thus, survival strategies under long-term DS included sacrificing distal/vulnerable organs and accumulating function-specialized metabolites and MEs to mitigate drought-induced oxidative damage. This is the first study that reports substance fluctuations after long-term DS in different organs of plants, and highlights the need to use whole plants to fully comprehend stress response strategies
Beschreibung:Date Completed 19.01.2021
Date Revised 19.01.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2020.09.034