A meta-analysis of anthropogenic impacts on physiological stress in wild primates

© 2020 Society for Conservation Biology.

Bibliographische Detailangaben
Veröffentlicht in:Conservation biology : the journal of the Society for Conservation Biology. - 1999. - 35(2021), 1 vom: 10. Feb., Seite 101-114
1. Verfasser: Kaisin, Olivier (VerfasserIn)
Weitere Verfasser: Fuzessy, Lisieux, Poncin, Pascal, Brotcorne, Fany, Culot, Laurence
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Conservation biology : the journal of the Society for Conservation Biology
Schlagworte:Journal Article Meta-Analysis Research Support, Non-U.S. Gov't Review cacería effect size glucocorticoides glucocorticoids habitat loss hunting mehr... logging pérdida de hábitat tala tamaño del efecto tourism turismo 伐木 效应量 旅游 栖息地丧失 狩猎 糖皮质激素
Beschreibung
Zusammenfassung:© 2020 Society for Conservation Biology.
As humanity continues to alter the environment extensively, comprehending the effect of anthropogenic disturbances on the health, survival, and fitness of wildlife is a crucial question for conservation science. Many primate populations occupy suboptimal habitats prone to diverse anthropogenic disturbances that may be sources of acute and chronic stress. Quantification of glucocorticoid (GC) concentrations has repeatedly been used to explore the impact of disturbances on physiological stress. Although it is still debated, prolonged elevation of GC levels may impair reproduction, growth, and immune system activity of individuals. We quantified the effect of anthropogenic disturbances on physiological stress in primates with a global meta-analysis based on data from 26 articles, covering 24 distinct species in 13 different countries. Anthropogenic disturbances were classified into 6 distinct categories: habitat loss, habitat degradation, ongoing logging, hunting, tourism, and other human activities. We calculated effect sizes (Hedges' g) with the standardized mean difference in GC concentrations between primates affected by human activity and their undisturbed conspecifics. We ran random-effects models and subgroup analyses to estimate the overall effect as well as a cumulative effect size for each disturbance category. Overall, primates inhabiting sites subject to anthropogenic disturbances exhibited significantly higher GC levels (g = 0.60; 95% CI: 0.28-0.93). Habitat loss and hunting were overall associated with increased GC concentrations, whereas the cumulative effects of the other disturbances were not statistically significant. Biologically, high GC levels may increase fitness by enabling individuals to overcome the challenges linked to anthropogenic disturbances. However, primates in disturbed environments may have sustained elevated GC levels. To strengthen future research, it is necessary to control confounding factors systematically (e.g., diet, reproductive status, predatory pressure, and resource availability) and improve understanding of the link between GC levels and the health, fitness, and survival of animals
Beschreibung:Date Completed 26.04.2021
Date Revised 26.04.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1523-1739
DOI:10.1111/cobi.13656