Climate and stomatal traits drive covariation in nighttime stomatal conductance and daytime gas exchange rates in a widespread C4 grass

© 2020 The Authors New Phytologist © 2020 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 229(2021), 4 vom: 10. Feb., Seite 2020-2034
1. Verfasser: Chieppa, Jeff (VerfasserIn)
Weitere Verfasser: Brown, Tia, Giresi, Presley, Juenger, Thomas E, Resco de Dios, Víctor, Tissue, David T, Aspinwall, Michael J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Panicum virgatum climatic adaptation intraspecific variation nighttime stomatal conductance photosynthesis stomatal density
Beschreibung
Zusammenfassung:© 2020 The Authors New Phytologist © 2020 New Phytologist Trust.
Nighttime stomatal conductance (gsn ) varies among plant functional types and species, but factors shaping the evolution of gsn remain unclear. Examinations of intraspecific variation in gsn as a function of climate and co-varying leaf traits may provide new insight into the evolution of gsn and its adaptive significance. We grew 11 genotypes of Panicum virgatum (switchgrass) representing differing home-climates in a common garden experiment and measured nighttime and daytime leaf gas exchange, as well as stomatal density (SD) and size during early-, mid-, and late-summer. We used piecewise structural equation modelling to determine direct and indirect relationships between home-climate, gas exchange, and stomatal traits. We found no direct relationship between home-climate and gsn . However, genotypes from hotter climates possessed higher SD, which resulted in higher gsn . Across genotypes, higher gsn was associated with higher daytime stomatal conductance and net photosynthesis. Our results indicate that higher gsn may arise in genotypes from hotter climates via increased SD. High SD may provide benefits to genotypes from hotter climates through enhanced daytime transpirational cooling or by permitting maximal gas exchange when conditions are suitable. These results highlight the role of climate and trait coordination in shaping genetic differentiation in gsn
Beschreibung:Date Completed 14.05.2021
Date Revised 14.05.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.16987