|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM316053287 |
003 |
DE-627 |
005 |
20250228044815.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202002741
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1053.xml
|
035 |
|
|
|a (DE-627)NLM316053287
|
035 |
|
|
|a (NLM)33035375
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ji, Xiao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Solid-State Electrolyte Design for Lithium Dendrite Suppression
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 07.12.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 Wiley-VCH GmbH.
|
520 |
|
|
|a All-solid-state Li metal batteries have attracted extensive attention due to their high safety and high energy density. However, Li dendrite growth in solid-state electrolytes (SSEs) still hinders their application. Current efforts mainly aim to reduce the interfacial resistance, neglecting the intrinsic dendrite-suppression capability of SSEs. Herein, the mechanism for the formation of Li dendrites is investigated, and Li-dendrite-free SSE criteria are reported. To achieve a high dendrite-suppression capability, SSEs should be thermodynamically stable with a high interface energy against Li, and they should have a low electronic conductivity and a high ionic conductivity. A cold-pressed Li3 N-LiF composite is used to validate the Li-dendrite-free design criteria, where the highly ionic conductive Li3 N reduces the Li plating/stripping overpotential, and LiF with high interface energy suppresses dendrites by enhancing the nucleation energy and suppressing the Li penetration into the SSEs. The Li3 N-LiF layer coating on Li3 PS4 SSE achieves a record-high critical current of >6 mA cm-2 even at a high capacity of 6.0 mAh cm-2 . The Coulombic efficiency also reaches a record 99% in 150 cycles. The Li3 N-LiF/Li3 PS4 SSE enables LiCoO2 cathodes to achieve 101.6 mAh g-1 for 50 cycles. The design principle opens a new opportunity to develop high-energy all-solid-state Li metal batteries
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a dendrite-free criteria
|
650 |
|
4 |
|a density functional theory calculations
|
650 |
|
4 |
|a interface energy
|
650 |
|
4 |
|a lithium-metal batteries
|
650 |
|
4 |
|a solid-state electrolytes
|
700 |
1 |
|
|a Hou, Singyuk
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Pengfei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Xinzi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Piao, Nan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Ji
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fan, Xiulin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Chunsheng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 46 vom: 01. Nov., Seite e2002741
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:46
|g day:01
|g month:11
|g pages:e2002741
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202002741
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 46
|b 01
|c 11
|h e2002741
|