A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations

Understanding correlation judgement is important to designing effective visualizations of bivariate data. Prior work on correlation perception has not considered how factors including prior beliefs and uncertainty representation impact such judgements. The present work focuses on the impact of uncer...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 2 vom: 08. Feb., Seite 978-988
1. Verfasser: Karduni, Alireza (VerfasserIn)
Weitere Verfasser: Markant, Douglas, Wesslen, Ryan, Dou, Wenwen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM316011010
003 DE-627
005 20231225160143.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3029412  |2 doi 
028 5 2 |a pubmed24n1053.xml 
035 |a (DE-627)NLM316011010 
035 |a (NLM)33031041 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Karduni, Alireza  |e verfasserin  |4 aut 
245 1 2 |a A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.09.2021 
500 |a Date Revised 30.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Understanding correlation judgement is important to designing effective visualizations of bivariate data. Prior work on correlation perception has not considered how factors including prior beliefs and uncertainty representation impact such judgements. The present work focuses on the impact of uncertainty communication when judging bivariate visualizations. Specifically, we model how users update their beliefs about variable relationships after seeing a scatterplot with and without uncertainty representation. To model and evaluate the belief updating, we present three studies. Study 1 focuses on a proposed "Line + Cone" visual elicitation method for capturing users' beliefs in an accurate and intuitive fashion. The findings reveal that our proposed method of belief solicitation reduces complexity and accurately captures the users' uncertainty about a range of bivariate relationships. Study 2 leverages the "Line + Cone" elicitation method to measure belief updating on the relationship between different sets of variables when seeing correlation visualization with and without uncertainty representation. We compare changes in users beliefs to the predictions of Bayesian cognitive models which provide normative benchmarks for how users should update their prior beliefs about a relationship in light of observed data. The findings from Study 2 revealed that one of the visualization conditions with uncertainty communication led to users being slightly more confident about their judgement compared to visualization without uncertainty information. Study 3 builds on findings from Study 2 and explores differences in belief update when the bivariate visualization is congruent or incongruent with users' prior belief. Our results highlight the effects of incorporating uncertainty representation, and the potential of measuring belief updating on correlation judgement with Bayesian cognitive models 
650 4 |a Journal Article 
700 1 |a Markant, Douglas  |e verfasserin  |4 aut 
700 1 |a Wesslen, Ryan  |e verfasserin  |4 aut 
700 1 |a Dou, Wenwen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 2 vom: 08. Feb., Seite 978-988  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:2  |g day:08  |g month:02  |g pages:978-988 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3029412  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 2  |b 08  |c 02  |h 978-988