TNLRS : Target-Aware Non-local Low-Rank Modeling with Saliency Filtering Regularization for Infrared Small Target Detection

Recently, infrared small target detection problem has attracted substantial attention. Many works based on local low-rank model have been proven to be very successful for enhancing the discriminability during detection. However, these methods construct patches by traversing local images and ignore t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2020) vom: 08. Okt.
1. Verfasser: Zhu, Hu (VerfasserIn)
Weitere Verfasser: Ni, Haopeng, Liu, Shiming, Xu, Guoxia, Deng, Lizhen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM316010960
003 DE-627
005 20240229142911.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3028457  |2 doi 
028 5 2 |a pubmed24n1303.xml 
035 |a (DE-627)NLM316010960 
035 |a (NLM)33031037 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Hu  |e verfasserin  |4 aut 
245 1 0 |a TNLRS  |b Target-Aware Non-local Low-Rank Modeling with Saliency Filtering Regularization for Infrared Small Target Detection 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Recently, infrared small target detection problem has attracted substantial attention. Many works based on local low-rank model have been proven to be very successful for enhancing the discriminability during detection. However, these methods construct patches by traversing local images and ignore the correlations among different patches. Although the calculation is simplified, some texture information of the target is ignored, and targets of arbitrary forms cannot be accurately identified. In this paper, a novel target-aware method based on a non-local low-rank model and saliency filter regularization is proposed, with which the newly proposed detection framework can be tailored as a non-convex optimization problem, therein enabling joint target saliency learning in a lower dimensional discriminative manifold. More specifically, non-local patch construction is applied for the proposed target-aware low-rank model. By combining similar patches, we reconstruct them together to achieve a better generalization of non-local spatial sparsity constraints. Furthermore, to encourage target saliency learning, our proposed saliency filtering regularization term based on entropy is restricted to lie between the background and foreground. The regularization of the saliency filtering locally preserves the contexts from the target and surrounding areas and avoids the deviated approximation of the low-rank matrix. Finally, a unified optimization framework is proposed and solved with the alternative direction multiplier method (ADMM). Experimental evaluations of real infrared images demonstrate that the proposed method is more robust under different complex scenes compared with some state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Ni, Haopeng  |e verfasserin  |4 aut 
700 1 |a Liu, Shiming  |e verfasserin  |4 aut 
700 1 |a Xu, Guoxia  |e verfasserin  |4 aut 
700 1 |a Deng, Lizhen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2020) vom: 08. Okt.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2020  |g day:08  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3028457  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2020  |b 08  |c 10