SelfPose : 3D Egocentric Pose Estimation From a Headset Mounted Camera

We present a new solution to egocentric 3D body pose estimation from monocular images captured from a downward looking fish-eye camera installed on the rim of a head mounted virtual reality device. This unusual viewpoint leads to images with unique visual appearance, characterized by severe self-occ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 6 vom: 08. Juni, Seite 6794-6806
1. Verfasser: Tome, Denis (VerfasserIn)
Weitere Verfasser: Alldieck, Thiemo, Peluse, Patrick, Pons-Moll, Gerard, Agapito, Lourdes, Badino, Hernan, de la Torre, Fernando
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM316010936
003 DE-627
005 20231225160143.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3029700  |2 doi 
028 5 2 |a pubmed24n1053.xml 
035 |a (DE-627)NLM316010936 
035 |a (NLM)33031034 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tome, Denis  |e verfasserin  |4 aut 
245 1 0 |a SelfPose  |b 3D Egocentric Pose Estimation From a Headset Mounted Camera 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.05.2023 
500 |a Date Revised 07.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a new solution to egocentric 3D body pose estimation from monocular images captured from a downward looking fish-eye camera installed on the rim of a head mounted virtual reality device. This unusual viewpoint leads to images with unique visual appearance, characterized by severe self-occlusions and strong perspective distortions that result in a drastic difference in resolution between lower and upper body. We propose a new encoder-decoder architecture with a novel multi-branch decoder designed specifically to account for the varying uncertainty in 2D joint locations. Our quantitative evaluation, both on synthetic and real-world datasets, shows that our strategy leads to substantial improvements in accuracy over state of the art egocentric pose estimation approaches. To tackle the severe lack of labelled training data for egocentric 3D pose estimation we also introduced a large-scale photo-realistic synthetic dataset. xR-EgoPose offers 383K frames of high quality renderings of people with diverse skin tones, body shapes and clothing, in a variety of backgrounds and lighting conditions, performing a range of actions. Our experiments show that the high variability in our new synthetic training corpus leads to good generalization to real world footage and to state of the art results on real world datasets with ground truth. Moreover, an evaluation on the Human3.6M benchmark shows that the performance of our method is on par with top performing approaches on the more classic problem of 3D human pose from a third person viewpoint 
650 4 |a Journal Article 
700 1 |a Alldieck, Thiemo  |e verfasserin  |4 aut 
700 1 |a Peluse, Patrick  |e verfasserin  |4 aut 
700 1 |a Pons-Moll, Gerard  |e verfasserin  |4 aut 
700 1 |a Agapito, Lourdes  |e verfasserin  |4 aut 
700 1 |a Badino, Hernan  |e verfasserin  |4 aut 
700 1 |a de la Torre, Fernando  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 6 vom: 08. Juni, Seite 6794-6806  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:6  |g day:08  |g month:06  |g pages:6794-6806 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3029700  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 6  |b 08  |c 06  |h 6794-6806