Uniform Partitioning of Data Grid for Association Detection

Inferring appropriate information from large datasets has become important. In particular, identifying relationships among variables in these datasets has far-reaching impacts. In this article, we introduce the uniform information coefficient (UIC), which measures the amount of dependence between tw...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 2 vom: 07. Feb., Seite 1098-1107
1. Verfasser: Mousavi, Ali (VerfasserIn)
Weitere Verfasser: Baraniuk, Richard G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM31597110X
003 DE-627
005 20231225160052.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3029487  |2 doi 
028 5 2 |a pubmed24n1053.xml 
035 |a (DE-627)NLM31597110X 
035 |a (NLM)33026983 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mousavi, Ali  |e verfasserin  |4 aut 
245 1 0 |a Uniform Partitioning of Data Grid for Association Detection 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.03.2022 
500 |a Date Revised 01.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Inferring appropriate information from large datasets has become important. In particular, identifying relationships among variables in these datasets has far-reaching impacts. In this article, we introduce the uniform information coefficient (UIC), which measures the amount of dependence between two multidimensional variables and is able to detect both linear and non-linear associations. Our proposed UIC is inspired by the maximal information coefficient (MIC) [1].; however, the MIC was originally designed to measure dependence between two one-dimensional variables. Unlike the MIC calculation that depends on the type of association between two variables, we show that the UIC calculation is less computationally expensive and more robust to the type of association between two variables. The UIC achieves this by replacing the dynamic programming step in the MIC calculation with a simpler technique based on the uniform partitioning of the data grid. This computational efficiency comes at the cost of not maximizing the information coefficient as done by the MIC algorithm. We present theoretical guarantees for the performance of the UIC and a variety of experiments to demonstrate its quality in detecting associations 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Baraniuk, Richard G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 2 vom: 07. Feb., Seite 1098-1107  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:2  |g day:07  |g month:02  |g pages:1098-1107 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3029487  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 2  |b 07  |c 02  |h 1098-1107