Precise Definition of a "Monolayer Point" in Polymer Brush Films for Fabricating Highly Coherent TiO2 Thin Films by Vapor-Phase Infiltration

In this work, we show that in order to fabricate coherent titania (TiO2) films with precise thickness control, it is critical to generate a complete polymer brush monolayer. To date, demonstrations of such dense polymer monolayer formation that can be utilized for inorganic infiltration have been el...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 41 vom: 20. Okt., Seite 12394-12402
1. Verfasser: Lundy, Ross (VerfasserIn)
Weitere Verfasser: Yadav, Pravind, Prochukhan, Nadezda, Giraud, Elsa C, O'Mahony, Tom F, Selkirk, Andrew, Mullen, Eleanor, Conway, Jim, Turner, Miles, Daniels, Stephen, Mani-Gonzalez, P G, Snelgrove, Matthew, Bogan, Justin, McFeely, Caitlin, O'Connor, Robert, McGlynn, Enda, Hughes, Greg, Cummins, Cian, Morris, Michael A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM315919876
003 DE-627
005 20231225155945.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.0c02512  |2 doi 
028 5 2 |a pubmed24n1053.xml 
035 |a (DE-627)NLM315919876 
035 |a (NLM)33021792 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lundy, Ross  |e verfasserin  |4 aut 
245 1 0 |a Precise Definition of a "Monolayer Point" in Polymer Brush Films for Fabricating Highly Coherent TiO2 Thin Films by Vapor-Phase Infiltration 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this work, we show that in order to fabricate coherent titania (TiO2) films with precise thickness control, it is critical to generate a complete polymer brush monolayer. To date, demonstrations of such dense polymer monolayer formation that can be utilized for inorganic infiltration have been elusive. We describe a versatile bottom-up approach to covalently and rapidly (60 s processing) graft hydroxyl-terminated poly(2-vinyl pyridine) (P2VP-OH) polymers on silicon substrates. P2VP-OH monolayer films of varying thicknesses can subsequently be used to fabricate high-quality TiO2 films. Our innovative strategy is based upon room-temperature titanium vapor-phase infiltration of the grafted P2VP-OH polymer brushes that can produce TiO2 nanofilms of 2-4 nm thicknesses. Crucial parameters are explored, including molecular weight and solution concentration for grafting dense P2VP-OH monolayers from the liquid phase with high coverage and uniformity across wafer-scale areas (>2 cm2). Additionally, we compare the P2VP-OH polymer systems with another reactive polymer, poly(methyl methacrylate)-OH, and a relatively nonreactive polymer, poly(styrene)-OH. Furthermore, we prove the latter to be effective for surface blocking and deactivation. We show a simple process to graft monolayers for polymers that are weakly interacting with one another but more challenging for reactive systems. Our methodology provides new insight into the rapid grafting of polymer brushes and their ability to form TiO2 films. We believe that the results described herein are important for further expanding the use of reactive and unreactive polymers for fields including area-selective deposition, solar cell absorber layers, and antimicrobial surface coatings 
650 4 |a Journal Article 
700 1 |a Yadav, Pravind  |e verfasserin  |4 aut 
700 1 |a Prochukhan, Nadezda  |e verfasserin  |4 aut 
700 1 |a Giraud, Elsa C  |e verfasserin  |4 aut 
700 1 |a O'Mahony, Tom F  |e verfasserin  |4 aut 
700 1 |a Selkirk, Andrew  |e verfasserin  |4 aut 
700 1 |a Mullen, Eleanor  |e verfasserin  |4 aut 
700 1 |a Conway, Jim  |e verfasserin  |4 aut 
700 1 |a Turner, Miles  |e verfasserin  |4 aut 
700 1 |a Daniels, Stephen  |e verfasserin  |4 aut 
700 1 |a Mani-Gonzalez, P G  |e verfasserin  |4 aut 
700 1 |a Snelgrove, Matthew  |e verfasserin  |4 aut 
700 1 |a Bogan, Justin  |e verfasserin  |4 aut 
700 1 |a McFeely, Caitlin  |e verfasserin  |4 aut 
700 1 |a O'Connor, Robert  |e verfasserin  |4 aut 
700 1 |a McGlynn, Enda  |e verfasserin  |4 aut 
700 1 |a Hughes, Greg  |e verfasserin  |4 aut 
700 1 |a Cummins, Cian  |e verfasserin  |4 aut 
700 1 |a Morris, Michael A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 36(2020), 41 vom: 20. Okt., Seite 12394-12402  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:36  |g year:2020  |g number:41  |g day:20  |g month:10  |g pages:12394-12402 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.0c02512  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 36  |j 2020  |e 41  |b 20  |c 10  |h 12394-12402