Calibrated Bayesian Credible Intervals for Binomial Proportions

Drawbacks of traditional approximate (Wald test-based) and exact (Clopper-Pearson) confidence intervals for a binomial proportion are well-recognized. Alternatives include an interval based on inverting the score test, adaptations of exact testing, and Bayesian credible intervals derived from unifor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical computation and simulation. - 1999. - 90(2020), 1 vom: 28., Seite 75-89
1. Verfasser: Lyles, Robert H (VerfasserIn)
Weitere Verfasser: Weiss, Paul, Waller, Lance A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of statistical computation and simulation
Schlagworte:Journal Article Approximate inference Confidence interval Exact inference Lower bound Upper bound
LEADER 01000naa a22002652 4500
001 NLM315831677
003 DE-627
005 20231225155752.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1080/00949655.2019.1672695  |2 doi 
028 5 2 |a pubmed24n1052.xml 
035 |a (DE-627)NLM315831677 
035 |a (NLM)33012882 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lyles, Robert H  |e verfasserin  |4 aut 
245 1 0 |a Calibrated Bayesian Credible Intervals for Binomial Proportions 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Drawbacks of traditional approximate (Wald test-based) and exact (Clopper-Pearson) confidence intervals for a binomial proportion are well-recognized. Alternatives include an interval based on inverting the score test, adaptations of exact testing, and Bayesian credible intervals derived from uniform or Jeffreys beta priors. We recommend a new interval intermediate between the Clopper-Pearson and Jeffreys in terms of both width and coverage. Our strategy selects a value κ between 0 and 0.5 based on stipulated coverage criteria over a grid of regions comprising the parameter space, and bases lower and upper limits of a credible interval on Beta(κ, 1- κ) and Beta(1- κ, κ) priors, respectively. The result tends toward the Jeffreys interval if the criterion is to ensure an average overall coverage rate (1-α) across a single region of width 1, and toward the Clopper-Pearson if the goal is to constrain both lower and upper lack of coverage rates at α/2 with region widths approaching zero. We suggest an intermediate target that ensures all average lower and upper lack of coverage rates over a specified set of regions are ≤ α/2. Interval width subject to these criteria is readily optimized computationally, and we demonstrate particular benefits in terms of coverage balance 
650 4 |a Journal Article 
650 4 |a Approximate inference 
650 4 |a Confidence interval 
650 4 |a Exact inference 
650 4 |a Lower bound 
650 4 |a Upper bound 
700 1 |a Weiss, Paul  |e verfasserin  |4 aut 
700 1 |a Waller, Lance A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of statistical computation and simulation  |d 1999  |g 90(2020), 1 vom: 28., Seite 75-89  |w (DE-627)NLM098160486  |x 0094-9655  |7 nnns 
773 1 8 |g volume:90  |g year:2020  |g number:1  |g day:28  |g pages:75-89 
856 4 0 |u http://dx.doi.org/10.1080/00949655.2019.1672695  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 90  |j 2020  |e 1  |b 28  |h 75-89