Transcriptome analysis of a new maize albino mutant reveals that zeta-carotene desaturase is involved in chloroplast development and retrograde signaling
Copyright © 2020 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 156(2020) vom: 01. Nov., Seite 407-419 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Carotenoid biosynthesis Chloroplasts Maize Transcriptome analysis Zeta-carotene desaturase Plant Proteins Carotenoids 36-88-4 Oxidoreductases mehr... |
Zusammenfassung: | Copyright © 2020 Elsevier Masson SAS. All rights reserved. Carotenoids are a group of natural tetraterpenoid pigments with essential roles in a variety of physiological processes of plants. Although carotenoid biosynthesis has been well characterized, the genetic basis of the pathway, especially in crop plants, is largely unknown. In this study, we characterized a new albino maize mutant called albino1 (alb1), which was obtained from a Mutator mutagenized population. The alb1 mutant showed defective chloroplast development and declined photosynthetic pigments, leading to a seedling-lethal phenotype. Genetic and molecular analyses indicated that ALB1 encoded a putative ζ-carotene desaturase (ZDS) involved in carotenoid biosynthesis. Measurement of carotenoids revealed that several major carotenoid compounds downstream of the ZDS were significantly reduced in alb1 mutant, indicating that ALB1 is a functional ZDS. Further transcriptome analysis revealed that several groups of nuclear genes involved in photosynthesis, such as light-harvesting complex, pigment metabolism, and chloroplast function, were significantly down-regulated in alb1 compared with wide type. Interestingly, expression of some maize plastid-localized nuclear genes, including POR, CAO, Lhcb, and RbcS, was substantially reduced in alb1 plants. Furthermore, treatment of the inhibitor fluridone significantly rescued gene transcripts of these nucleus-encoded genes in alb1 mutant, which supported the retrograde signaling of ζ-carotene/phytofluene derived molecules. These results suggested that ALB1/ZDS might function as a regulator to coordinate nuclear photosynthetic gene expression in plastid-to-nucleus retrograde signaling during development of maize plants. Together, these results have demonstrated that ALB1/ZDS is essential for carotenoids biosynthesis and plays crucial roles in chloroplast biogenesis and development in maize |
---|---|
Beschreibung: | Date Completed 19.01.2021 Date Revised 19.01.2021 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2020.09.025 |