Scalable Production of Wearable Solid-State Li-Ion Capacitors from N-Doped Hierarchical Carbon

© 2020 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 45 vom: 30. Nov., Seite e2005531
1. Verfasser: Xu, Yanan (VerfasserIn)
Weitere Verfasser: Wang, Kai, Han, Jianwei, Liu, Cong, An, Yabin, Meng, Qinghai, Li, Chen, Zhang, Xiong, Sun, Xianzhong, Zhang, Yaosheng, Mao, Lijuan, Wei, Zhixiang, Ma, Yanwei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article flexible devices lithium-ion capacitors nitrogen-doped hierarchical carbon self-propagating high-temperature synthesis wearable devices
Beschreibung
Zusammenfassung:© 2020 Wiley-VCH GmbH.
Smart and wearable electronics have aroused substantial demand for flexible portable power sources, but it remains a large challenge to realize scalable production of wearable batteries/supercapacitors with high electrochemical performance and remarkable flexibility simultaneously. Here, a scalable approach is developed to prepare wearable solid-state lithium-ion capacitors (LICs) with superior performance enabled by synergetic engineering from materials to device architecture. Nitrogen-doped hierarchical carbon (HC) composed of 1D carbon nanofibers welded with 2D carbon nanosheets is synthesized via a unique self-propagating high-temperature synthesis (SHS) technique, which exhibits superior electrochemical performance. Subsequently, inspired by origami, here, wave-shaped LIC punch-cells based on the above materials are designed by employing a compatible and scalable post-imprint technology. Finite elemental analysis (FEA) confirms that the bending stress of the punch-cell can be offset effectively, benefiting from the wave architecture. The wearable solid-state LIC punch-cell exhibits large energy density, long cyclic stability, and superior flexibility. This study demonstrates great promise for scalable fabrication of wearable energy-storage systems
Beschreibung:Date Revised 10.11.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202005531