Transcriptomic and targeted metabolomic analysis identifies genes and metabolites involved in anthocyanin accumulation in tuberous roots of sweetpotato (Ipomoea batatas L.)

Copyright © 2020 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 156(2020) vom: 15. Nov., Seite 323-332
1. Verfasser: He, Liheng (VerfasserIn)
Weitere Verfasser: Liu, Xiayu, Liu, Shifang, Zhang, Jie, Zhang, Yi, Sun, Yan, Tang, Ruimin, Wang, Wenbin, Cui, Hongli, Li, Runzhi, Zhu, Hongyan, Jia, Xiaoyun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Anthocyanin accumulation Metabolome Sweetpotato Transcriptome Underground tuberous roots Anthocyanins
Beschreibung
Zusammenfassung:Copyright © 2020 Elsevier Masson SAS. All rights reserved.
Purple-fleshed sweetpotato (PFSP) accumulates high amounts of anthocyanins that are beneficial to human health. Although biosynthesis of such secondary metabolites has been well studied in aboveground organs of many plants, the mechanisms underlying anthocyanin accumulation in underground tuberous roots of sweetpotato are less understood. To identify genes and metabolites involved in anthocyanin accumulation in sweetpotato, we performed comparative transcriptomic and metabolomic analysis of (PFSP) and white-fleshed sweetpotato (WFSP). Anthocyanin-targeted metabolome analysis revealed that delphinidin, petunidin, and rosinidin were the key metabolites conferring purple pigmentation in PFSP as they were highly enriched in PFSP but absent in WFSP. Transcriptomic analysis identified 358 genes that were potentially implicated in multiple pathways for the biosynthesis of anthocyanins. Although most of the genes were previously known for their roles in anthocyanin biosynthesis, we identified 26 differentially expressed genes that are involved in Aux/IAA-ARF signaling. Gene-metabolite correlation analysis also revealed novel genes that are potentially involved in the anthocyanin accumulation in sweetpotato. Taken together, this study provides insights into the genes and metabolites underlying anthocyanin enrichment in underground tuberous roots of sweetpotato
Beschreibung:Date Completed 19.01.2021
Date Revised 19.01.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2020.09.021