Noisy-As-Clean : Learning Self-supervised Denoising from Corrupted Image

Supervised deep networks have achieved promising performance on image denoising, by learning image priors and noise statistics on plenty pairs of noisy and clean images. Unsupervised denoising networks are trained with only noisy images. However, for an unseen corrupted image, both supervised and un...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2020) vom: 30. Sept.
1. Verfasser: Xu, Jun (VerfasserIn)
Weitere Verfasser: Huang, Yuan, Cheng, Ming-Ming, Liu, Li, Zhu, Fan, Xu, Zhou, Shao, Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM315681438
003 DE-627
005 20240229142903.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3026622  |2 doi 
028 5 2 |a pubmed24n1303.xml 
035 |a (DE-627)NLM315681438 
035 |a (NLM)32997627 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Jun  |e verfasserin  |4 aut 
245 1 0 |a Noisy-As-Clean  |b Learning Self-supervised Denoising from Corrupted Image 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Supervised deep networks have achieved promising performance on image denoising, by learning image priors and noise statistics on plenty pairs of noisy and clean images. Unsupervised denoising networks are trained with only noisy images. However, for an unseen corrupted image, both supervised and unsupervised networks ignore either its particular image prior, the noise statistics, or both. That is, the networks learned from external images inherently suffer from a domain gap problem: the image priors and noise statistics are very different between the training and test images. This problem becomes more clear when dealing with the signal dependent realistic noise. To circumvent this problem, in this work, we propose a novel "Noisy-As-Clean" (NAC) strategy of training self-supervised denoising networks. Specifically, the corrupted test image is directly taken as the "clean" target, while the inputs are synthetic images consisted of this corrupted image and a second yet similar corruption. A simple but useful observation on our NAC is: as long as the noise is weak, it is feasible to learn a self-supervised network only with the corrupted image, approximating the optimal parameters of a supervised network learned with pairs of noisy and clean images. Experiments on synthetic and realistic noise removal demonstrate that, the DnCNN and ResNet networks trained with our self-supervised NAC strategy achieve comparable or better performance than the original ones and previous supervised/unsupervised/self-supervised networks. The code is publicly available at https://github.com/csjunxu/Noisy-As-Clean 
650 4 |a Journal Article 
700 1 |a Huang, Yuan  |e verfasserin  |4 aut 
700 1 |a Cheng, Ming-Ming  |e verfasserin  |4 aut 
700 1 |a Liu, Li  |e verfasserin  |4 aut 
700 1 |a Zhu, Fan  |e verfasserin  |4 aut 
700 1 |a Xu, Zhou  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2020) vom: 30. Sept.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2020  |g day:30  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3026622  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2020  |b 30  |c 09