Pointfilter : Point Cloud Filtering via Encoder-Decoder Modeling
Point cloud filtering is a fundamental problem in geometry modeling and processing. Despite of significant advancement in recent years, the existing methods still suffer from two issues: 1) they are either designed without preserving sharp features or less robust in feature preservation; and 2) they...
Veröffentlicht in: | IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 3 vom: 01. März, Seite 2015-2027 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on visualization and computer graphics |
Schlagworte: | Journal Article |
Zusammenfassung: | Point cloud filtering is a fundamental problem in geometry modeling and processing. Despite of significant advancement in recent years, the existing methods still suffer from two issues: 1) they are either designed without preserving sharp features or less robust in feature preservation; and 2) they usually have many parameters and require tedious parameter tuning. In this article, we propose a novel deep learning approach that automatically and robustly filters point clouds by removing noise and preserving their sharp features. Our point-wise learning architecture consists of an encoder and a decoder. The encoder directly takes points (a point and its neighbors) as input, and learns a latent representation vector which goes through the decoder to relate the ground-truth position with a displacement vector. The trained neural network can automatically generate a set of clean points from a noisy input. Extensive experiments show that our approach outperforms the state-of-the-art deep learning techniques in terms of both visual quality and quantitative error metrics. The source code and dataset can be found at https://github.com/dongbo-BUAA-VR/Pointfilter |
---|---|
Beschreibung: | Date Revised 01.02.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0506 |
DOI: | 10.1109/TVCG.2020.3027069 |