|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM315519401 |
003 |
DE-627 |
005 |
20250228022719.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.15369
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1051.xml
|
035 |
|
|
|a (DE-627)NLM315519401
|
035 |
|
|
|a (NLM)32981218
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Han, Yunfeng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Responses of arbuscular mycorrhizal fungi to nitrogen addition
|b A meta-analysis
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 14.04.2021
|
500 |
|
|
|a Date Revised 14.04.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2020 John Wiley & Sons Ltd.
|
520 |
|
|
|a Arbuscular mycorrhizal (AM) fungi play important roles in carbon (C), nitrogen (N) and phosphorus (P) cycling of terrestrial ecosystems. The impact of increasing N deposition on AM fungi will inevitably affect ecosystem processes. However, generalizable patterns of how N deposition affects AM fungi remains poorly understood. Here we conducted a global-scale meta-analysis from 94 publications and 101 sites to investigate the responses of AM fungi to N addition, including abundance in both intra-radical (host roots) and extra-radical portion (soil), richness and diversity. We also explored the mechanisms of N addition affecting AM fungi by the trait-based guilds method. Results showed that N addition significantly decreased AM fungal overall abundance (-8.0%). However, the response of abundance in intra-radical portion was not consistent with that in extra-radical portion: root colonization decreased (-11.6%) significantly, whereas extra-radical hyphae length density did not change significantly. Different AM fungal guilds showed different responses to N addition: both the abundance (spore density) and relative abundance of the rhizophilic guild decreased significantly under N addition (-29.8% and -12.0%, respectively), while the abundance and relative abundance of the edaphophilic guild had insignificant response to N addition. Such inconsistent responses of rhizophilic and edaphophilic guilds were mainly moderated by the change of soil pH and the response of root biomass, respectively. Moreover, N addition had an insignificant negative effect on AM fungal richness and diversity, which was strongly related with the relative availability of soil P (i.e. soil available N/P ratio). Collectively, this meta-analysis highlights that considering trait-based AM fungal guilds, soil P availability and host plant C allocation can greatly improve our understanding of the nuanced dynamics of AM fungal communities under increasing N deposition
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Meta-Analysis
|
650 |
|
4 |
|a abundance
|
650 |
|
4 |
|a arbuscular mycorrhizal fungi
|
650 |
|
4 |
|a nitrogen addition
|
650 |
|
4 |
|a phosphorus availability
|
650 |
|
4 |
|a richness and diversity
|
650 |
|
4 |
|a soil acidification
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Feng, Jiguang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Mengguang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Biao
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 26(2020), 12 vom: 11. Dez., Seite 7229-7241
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnas
|
773 |
1 |
8 |
|g volume:26
|g year:2020
|g number:12
|g day:11
|g month:12
|g pages:7229-7241
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.15369
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 26
|j 2020
|e 12
|b 11
|c 12
|h 7229-7241
|